Numerical Methods for PDE

In this chapter we discuss the finite difference methods for linear partial differential equa-
tions. We consider one example from each of Hyperbolic, Parabolic and Elliptic partial dif-
ferential equations. The basic concept of consistency, stability and convergence of numerical
schemes are discussed.

1 Hyperbolic equation

Simplest hyperbolic partial differential equation is one way wave equation,
(1.1) Pu=w+au, =0, —oo<z<oo,t>0, u=u(zt)
with initial condition

(1.2) u(z,0) = ug(z).

(1.1) - (1.2) is an initial value problem.

First define the grid of points in the (z,t¢) plane by drawing vertical and horizontal lines
through the points (z;,t,)

grid points grid lines

where

t, = nAt, n=0,1,2,...
z; = ih, i=0,+1,42 ...



The lines x = x; and ¢t = t,, are called grid lines and their intersections are called mesh points
of the grid. We denote
u(zi, ty) = u(ih,nAt) = u

The basic idea of finite difference method is to replace derivatives by finite differ-
ences. This can be done in many ways; as example we have

(i) Forward difference:

ou w(x, tng1) — ul(xg, ty) utt —
(s — At) = & — i A
0% ) L ro(an =" oan)
(ii) Backward difference:
ou (g, tn) — (g, tho1) Cur !
T (@i, tn) = Az + O(At) = T O(At)
(iii) Central difference:
ou B w(xg, tn1) — w(xi, ty—1) 2 u;-”rl — u’;fl 9
pr (i, tn) = SA7 + O(At?) = SA7 + O(At?)

Similar formulas can be given for derivative with respect to x i.e.,

%(ﬂ%tn) = W + O(h) (Forward difference)
U? — U?_l .
= + O(h) (Backward difference)
Uity — Uiy 2 :
= + O(h*) (Central difference)

By replacing the derivatives by finite differences and neglecting the error terms we have list of
difference equations. For example

ot

Yy v, (v — 7)) _ :
(1.3) Pagpv = A7 +a - =0 (forward time — forward space)
e | |
(1.4) Py pv = A7 +a . =0 (forward time — backward space)
ntl _gn ORI
(1.5) Ppypv = ki Yoy a(UHl viz) =0 (forward time — central space)
’ At 2h
n_ n-l ol
(1.6) P pv = Y A:Z + a(vzﬂh o) =0 (backward time — forward space)
n_gnl no_ g
(1.7) P pv = Y A:Z + a(Uz hvz_l) =0 (backward time — backward space)

Like this one can consider several schemes. Here in all we replace the derivatives by finite
differences. Given a list of schemes one naturally ask the question which of the schemes are
useful and which are not, as indeed some are not.



Example : Take a =1 in (1.1)

U+ uy =0
1 if <0
with L.C: u(z,0) =up(z) =< 223 —-322+1 if 0<z<1
0 r>1
Exact solution is given by
1 x <t
u(z,t) =uplzx —t) =4 2(x—t)3 -3 —t)2+1 0<z—t<1
0 x>t+1

Now consider the scheme (1.3) for this example, i.e.,

At
ot = — T(U?H —}') (forward time — forward space).

Let A = %, then
oI = (1 + Aol — Aol .
Let x =1 and z, = 1 for some i = jo.

Then v(1,0) = v(z},,0) = 0 = u(z;,,0) = v?o and v? =0 j > jo,

vjl»o = (1+ )\)U?O - )\U?O_H =0
vi = 0 Vn and for any choice of A

= =0 VYj>jo

=v(r,t)=0 Vr>1

Solution obtained from (1.3) does not converges to u(z,t) as mesh size h and At goes to
zero. Therefore Scheme (1.3) is not a correct scheme for u; + u, = 0. To study what are the
schemes are useful (convergent) let us first introduce the concepts of consistency and stability.

Throughout the notes, norm || - || means either

1/2 1/2
] = Jlull> = (hzrum)r?) - (hzrujr2)

or

[lull = [Julloo = sup |u(z;)] = sup |u;.
J J



Definition : Given a partial differential equation Pu = 0 and a finite difference scheme
Py pv = 0 we say that the finite difference scheme is consistent with the partial differential
equation in norm || - ||, if for the actual solution u of Pu =0,

||Pat,pul| =0 as At,h — 0.

Definition : The finite difference method is accurate of order (p,q) in || - || if for the actual
solution u of Pu =0,

|| Pat,pul| = O(hP) + O(At?).

Example : Let u be solution of (1.1).Then

%+ﬂ%—(ﬁéﬁﬁv—acﬁﬁ;ﬁ)+mAn+mm:o
ie.,
|| Pacnul| = O(At) + O(h).
Hence i1 . i i
Pagpv = % At_ k. + a(viﬂh_ u7) = 0 is consistent with u; + au, = 0.

Similarly scheme (1.4), (1.5),(1.6) and (1.7) are consistent with u; + auy, = 0.

In all these schemes one can write

k
n+1 __ on n n n
v, = E QUL = QUi+ ..oV o+ g g

j=—k

By defining forward shift operator S;v; = v;41 and backward shift operator S_v; = v;_1 we

can write
oM = SFl + a1 S vl + agul + a1 Sy 4.+ apSEol
where
S% = 8108 ... 0S4 (k times composition)
I = Identity operator = S% = SEL.
Therefore

vt = Q(Sy, S Vi
In general one can write the one step scheme by
n+1 n n+1 n+l  n+l ,ntl T
(1.7). " = Qu"™ where v :(---7%—1’”1‘ ,vH_l,...) .

and @ is a matrix.
Definition : The finite difference method (1.7) is called stable in |||, if there exist constants
K and f such that

[0 < Ke™[]°]]

where t = nAt, K and [ are independent of A and At



Definition : A finite difference method is unconditionally stable if it is stable for any time
step At and space step h.

Examples :
At
ot = o - S - o)
a finite difference scheme for u; +u; = 0
At
v =t (=N Ny, A= o
0" Joo = sup [v] T = sup [} (1 = A) + Avj' 4|
i i

< sup{|L = Al o] + A} < 1= AL [0"loo + AL [[0"]]co-
1

If 0 < A <1, then |00 < |1"|oo < -.. < |[0°]|co- Therefore this scheme is lo-stable if
A <1 (conditionally stable).

Consider the following implicit scheme:
o = ot = AP — o ;) n>1 (backward time - backward space)

ie, vP(1+A) — AP, = P! This can be written in the matrix form, Av" = v
A= (aij) with a; = (1 + )\) and a;_1 = —\ and Qjj = 0if j #4,i— 1.

A = (1+ AN + C] where C = (Cj;) with Cj;—1 = % and Cy; = 0 if j # i — 1. Hence
[1Cl]oo < 1%\ < 1. Hence A is invertible and

1 1
—1
147 e = <1+>\>1—||C||oo

=1 where

A

< ()=t
R S VA
Hence
" = A" where o = (o u ol oy )T

10" lloo < A7 ool [0" Moo < 10" Hloo < - < H10°loa

Hence this scheme is unconditionally stable.

Definition : A finite difference method is said to be linear if it is of the form
m2
Z cjv;bri where ¢; 's are constants

Jj=—m

Y

m1, Mgy are non-negative integers.

Theorem (Lax): If a finite difference method is linear, stable and accurate of order (p,q) in
[| - ||, then it is convergent of order (p,q) in || - |-

Proof :
o= Qe Q= Q(S,,5.)
= Q@)
= QuY, @’ = Qo...0Q(j times composition)



This implies

07| = [|Q™°|| < Ke’!||v°|| (Scheme is stable)
n,,0
IR e
[[0°]]
n,,0
= sup 190 < oo
oolj20 2Pl

Let u(z,t) be the exact solution of the problem Pu = 0. Then
u" = Qu ! + At(O(hP) + O(At9))

by the definition of accuracy of the scheme.

w® = " -, w? =0 =’ =0
w' = Qu" '+ ALO(RP) + O(At?))
= Q%" 2+ Q((O(K?) + O(At))At) + At(O(hP) + O(At9))

n—1
= Q"'+ At) Q' (O(h") + O(At?))
j=0

n—1
"] < At [IQVIO(R) + O(At))
j=0
< (n+1)AtKeP(O(RP) + O(AL?))
< BHUK(OWP) + O(ALY))
= O(h") + O(At?).
This completes the proof.
Von Neumann Analysis
Let v = (v)72_., be a sequence. Define the discrete Fourier transform of v by

0(¢) = Zvjeij5 i=+v—-1, £€]0,2n).
J

Forward shift operator S defined by
SJrU = (S+Uj)oo SJrvj = Vj+1

j:—oo’
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Backward shift operator S_ defined by

S_v= (vaj)oo S,’Uj =Vj-1

jzfooa

@):Z(S+vj)eij§ = Z'Uj+1€ij§
J

= 3 uyellIE 2 Y i
j j

J

= e %3(¢).
Similarly S_v = e%5(¢).
Example :
U+ uy =0
Consider the numerical scheme
At
ot = - S -y
At
= (1=XNv+ I, A= -

= (1= A"+ AS_oP
= (L= N+ AS )} = QSh, S_p

= "l = Q(S., S )"

= ol = > v;”rleij5

(=X + )\S,)v;‘eij5

> (1= )\)eijgv? +35 )\eigv;‘eijf

= (1= X)0" + Ae0" = (1 — \) + X' )p"
= (1= X+ X"

In general
an-i-l _ Q(e—zf’ ei{)q/)\n
p(€) = Qe %, e%) iscalled amplification factor

Definition : A symbol p(§) is said to satisfy the Von Neumann condition if there exists a
constant C' > 0 (independent of At, h,n and &) such that

p(§)| <1+ CAt  for € €]0,2m)

Theorem : A finite difference method v"*! = Qu" is stable in the Iy norm iff the Von-Neumann
condition is satisfied

Proof : Suppose the Von Neumann condition is satisfied. Let v"*1 = Qu". By Parsevel ’s
relation

2m
12 _ L[ a2
Syt =5 0/ EEGIR



upon multiplying by h

2m
h
o LGRS

e

0
2m
h
o GGk
0

2
L1+ CA [[©F = 1+ A"

™
0

IN

0" ]2 < (1 + CAY|[v" ]2

< eCAtHUnHQ eCAt.eCAtHUanHQ

eZC’At‘ ’vn—l ’ ‘2
e(n-{—l)CAt‘ ’UO‘ ’2

(VAN VAN VAN VAN

eZCtHUOHQ

= scheme is [y stable.

Conversely, suppose Von-Neumann condition is not satisfied. This implies for each C' >0 3
a number {c € [0,27) such that |p(&c)| > (1 + CAt). Since p(£) is a continuous function of £
there exists an interval [0, 0s] in [0, 27) such that

lp(§)| > (1+CAt) V € [bh,0:] = Ic

Consider the discrete initial data v0 = (v?) such that

5(6) { 0 if £¢1c
v(&) = - .
7]1(022_01) if § c IC

Then by Parsevel’s relation

21
n n h ~n
=R @ = ok [
J

0
21
h
= o [P )P
o
- LGl GIRS
0

02
h
- LGl GIRTS
01

2

= (14 CAp*tY
h(0y — 6,) ( )

> (1+ CAt)Q(nH)Qi(@z —01)
T

= (1+CA* |03



o™ ]y > (1 + CA)™ 10|y forany C >0
= scheme is not [y stable.

Examples : consider the equation

ur + au, =0

u(z,0) = up(z), ac€ R

1. Godunov Scheme : It is given by

1
gt = o AL
(1 —sgna)
. LT
1-—- 1 1-
_ o msna) gy (s (- sgna)
2 2 2
(1+sgna)

vy 1 max(0, —aX) + vj' (1 — |Aa|) + max(0,a\)v) | where A\ = At/h.

lo stability:
[0+ oo = sup [} | < max(0, —a) sup vy | + (| 1 —[Aa| |)sup [vf|

+ max (0, a\) sup |[v]" |
i

IN

(max(0, —aX) + max(0,aX) + | 1 — [Aa| )||v"]|co
= (laAl + 11 —=[aA] D][o"loo
Godunov scheme is [, stable if |[a\| < 1.
lo stability: ' ‘
p(€) = e ® max(0, —a)) + (1 — |Aa|) + max (0, a\)e
PO <1 —[Aaf [+ |aA] <1 if [aA] <1

Von-Neumann condition is satisfied if |a\| <1
= lg-stable if |Aa| <1
= by Lax theorem scheme is convergent in [y norm and /s norm if [aA| < 1.

2. Lax-Friedrichs Scheme : It is defined by

n n
1)1.1+1 _ U’i—}—l + U’i—l Ata

[ 9 - 2h (U?-i-l - U’Ln—l) .
Since noLn
v = Yip1 T Vi1 5 Yiz1 + O(hZ),
vt — vl
Z+12h i1 :Um+0(h2)’



we have

v = — T(U?Jrl — o 1) + O(h?)

R A SRl ) +0<h—2> Ly

At 2h At

2
= v + O(At) + av, + O(h*) + O (Z—t>

h
= v+ avy + O(At) + O(h)  if A is bounded.

The Lax-Friedrich’s Scheme is first order accurate i.e. p=1,¢ =1
ls Stability:

1—a) 1+a)
ot (d=ad) 5 )v?+1+7( 5 )Uzn—1

n+1| <

1 1
|[v" oo = sup [v] 31— aAlsup|vfy | + S[1+ e[ sup [v |
(A T T

1 n
5 (11 = aA[+[1+ aA)[[o" [

< [l i Jar <1

IN

= L. F. Scheme is [, stable if |[aA] < 1
lo Stability :

p(&) = %(1 —aN)e ¢ + %(1 +a\)e®

1 1
Hence L.F. Scheme is Iy stable if |a)| < 1.
L.F. Scheme is convergent in [y norm and /o norm if |aA| < 1.

3. Lax-Wendroff Scheme :
Let u be a solution of u; + au, = 0

u(z, t+ At) = wu(z,t) + Atug(z,t) + (A;)2utt(m, t) + O(At?)

2
= wu(z,t) — Atau, + (A;) a*Ugzy + O(AL)?

Ata a?(At)?

= u(x,t) — W(U(CE + h,t) —u(x — h,t)) + (u(x + h,t) — 2u(z,t)

2h?
Hu(x — h,t)) + AtO(R?) + (At)20(h?).
Now Lax-Wendroff scheme is given by
ot = - ﬁ(vzﬁrl -0 )+ Thg(viﬂ =20 +vity)

This scheme is second order accurate i.e, p = q = 2

lo stability :

10



by 4 . 232 . 4
p&) = 1= T =) T (e 2 g o)

A . 2 2 . .
= 1+ %( — e %) g 2)\ (e + e —2)
= 14 Aaisin€ 4 a?X%(cos € — 1)

= 1—a* *(1 —cos€) +idasiné

= 1-—2d°)\? sin2 3 +idasin€ (because 1 — cos& = 2sin? §)
(O =1 —4a*\*(1 — a®*\?) sin’ g
POl <1 i Jad| <1
Scheme is [o stable. Hence converges in I3 norm
Remark : Lax-Wendroff scheme is not [, stable
4. Crank-Nicolson Scheme : Let u be the solution. Then
t+At
w(x,t + At) —u(x,t 1
@t 207wl _ [ e
t
_ ug(x,t + A;) + uy(z, t) +O(A)
_ _aum(az,t + A;) + ug(z,t) L oA
__a(u(@+ht+Al) —u(x —h,t+At))
2 2h
h,t) — —h,t
_E(U(C'H‘ ) ) u(x ) )) —|—O(At2) —|—O(h2)
2 2h
Crank-Nicolson scheme is given by
ot —op __¢@a (U;fll — o) _a (v —vity)
At 2 2h 2 2h
This scheme is second order accurate i.e., p =g = 2
Let A = %
- 4 +1 +U i + 4 Ul-i-i_ll = U ( ZJrl 71)
A
(T“S +I+@S+) ntl - (I— (8, — 5 )) o
<_I)‘e+i§ Tl Z)\e—ig) Gl _ (1 (i€ — i§)> n
Sl _ 251n£ on
zsm§
1+ ‘v‘z sing 2
ple) = — @zsmf -z
PO = 1



Hence the Scheme is unconditionally stable.
= Crank-Nicolson is convergent in ls norm

5. Unconditionally unstable scheme : Let a=1 in (1.1)

At
U;H—l = v - %(U?ﬂ —vity)
vt —op iy — Ry 2
. A7 “ 4+ 57 = v+ vy + O(At) + O(h?),

order of accuracy = (p,q) = (2,1)

A A

PO = 1- S
= 14+ 4Asiné
PP = 14+ Nsin?¢é>1if € 40,7
this scheme is not Iy stable.
This scheme is not [, stable

2 Parabolic equation
Consider the heat equation
(2.1) U = bug, —co<xr<oo, t>0, b>0
with initial condition
(2.2) u(z,0) = uo(x)

u(z,t + At) — u(z,t)

= At
h,t) —2 t —h,t
Upy = u(x +h, ) u('%; )+u(x ) ) + O(hQ)
h
The scheme for (2.1)
n+tl _ ,n b
S = (0l — 2] +of) isof order (p,q) = (2,1).

vt = op + SR (vl — 20] o) A
(2.3) = v + Ab(vj —2v + v ) A= /5l

= v (1 =2Xb) + Abvj | + Abvj

I Stability :

i

o™ = sup [0 1| < (11— 200+ Ab 4+ Ab) sup o]
i 1

IN

(11— 2Xb] + Ab + Ab)|[v"]] 00

12



if Ab < 1/2 then scheme is [, stable

Define a scheme by

R S U A ar
At 2 h?
b (v, — 207 + ot y)
2 h?
This scheme is second order accurate i.e. p = q = 2.
=
bAt bAt
(24) o= o o (o = 207 ) + (ol — 20+ 0y)
The scheme (2.4) is called Crank-Nicolson Scheme.
f-Scheme : Let 0 < 0 <1, Define
(2.5) ot = ol + ObA (0 — 200 + o) 4 (1= 0)Ab(v], — 207 4 0P y)

If # =1/2, 6 - scheme is nothing but Crank-Nicolson Scheme.

Remark : The order of accuracy of the scheme (2.5)=(p,q) = (2,1) if § # 1/2. If 0 = 1/2 it is
second order accurate i.e., p=q=2.

lo stability of # Scheme : The scheme (2.5) can be written as

—ObAEL (1 4 206\)07 Tt — 9bAT L = (1 — )AbV™ ; + (1 — 2(1 — O)\b)v™
(2 6) i+1 7 i—1 i—1 7
: +(1 = )bl ;.

Then

(=ObAe™ + (14 20bX) — ObAC)T" L = ((1 = O)Abe® + (1 — 2(1 = ) Ab)
+(1 = 0)Abei€) "

s (A= 0)Abe™ + (1 — 2(1 — O)Ab) + (1 — O) Abe™ )

(—Obe€ + (1 + 20b)) — Obre %) e

(1= + e ) 4 (1 —2(1 — 6)D)
P = oA e ) £ (15 2000

2(1 —0)Abcos& + (1 —2(1 — 6)\b)
—260bA cos  + (1 + 20b))
1—2(1—=0)A\b(1 — cos&)
1+ 20bA(1 — cos§)

Note that 1 — cos & = 25sin® %, hence

13



_ 1—4(1—0)Absin?§
B 1 + 46bA sin® %

p(§)

Let w = 4)\bSiHQg Now —1 < p(§) <1

- 1< M <1
- 146w -
or 24 20w > w > 0,
w > 0 is obvious. Therefore
(2.7) PO <1 if (1-20)w <2

If6 > 1/2 (2.7) is obvious. For 0 < 0 < 1/2,(1—260) > 0. Hence |[p(§)| < 1if (1—20)4\b < 2.
Therefore 6 scheme is unconditionally stable if § > 1/2 and conditionally stable (i.e. Ab <

sy ) for 0< 6 <1/2.

Il Stability of #-scheme : Scheme (2.6) can be written as
A"t = By”

where A = (a;;) is an infinite tridiagonal matrix with a;; = (14+260Ab), a;i—1 = a1 = —6Ab and
a;j =0if j #4,i—1,i+1. B = (b;;) is also an infinite matrix with b;; = (1-2(1—-0)bA), bsi—1 =
biiy1 = (1 — (9))\[) and b;; =0 if j#£d,0—1,i+ 1.

Now A = (1420Ab)({ + C). Where C = (Cj;) be a matrix with Cj; 41 = Cji—1 = % and
Cij=0ifj#i—-1,i+1

20\b
I|C]|oo = &gp(; |Ci5l) = T3 2000 < 1

Therefore (I + C) is invertible and

1 1
1T +C) Moo < = so~ = (1+20A0)
1_HCHOO 1—m
1

= A7 le = I+C) Ml <1

1—1—29)\6"(

Now vl = A~1By™ and
10" loo < AT |sol[Bllool[v™[] < [IBllso] 0"l

Scheme is I stable if || B||oo < 1.

[1Blloo = sup(Y_ [bi]) = 2(1 — O)Ab + [(1 — 2(1 — 0)bA|
g
If 1 —2(1—0)b\ >0, then ||B||loo <1
f-scheme is I, stable if bA < 2(1—1_0)
0 scheme is convergent in [, norm if bA <

1
2(1-0)

14



3 Elliptic equation

Consider the Dirichlet problem

0*u  O%u .
(3.1) Puzw—l—a—y?:f(:c,y) in Q=(0,1) x (0,1)
with boundary condition
(3.2) u = g(z,y) on the boundary of Q = 0

Let us denote u(x;.y;) = ug, flxs,y5) = fijand on boundary uf = v] = g(24,y;). Then the

numerical scheme corresponding to (3.1) can be written as

i o i TS S S
Vigg — 20 +uy (v =20+ )

3 Pands? = = Rape o

which is second order accurate. Because if u is a solution of (3.1) then
Paz.ay = O(Az?) + O(Ay?)

Since the ratio of the mesh plays an insignificant role in the theory of elliptic problems. to
study the above problem we take Az = Ay = h for simplicity. Then (3.3) becomes

J J J Jj+1 J J—1\ _ 12 ¢
Vi —20) v+ (v = 2v) +v] ) = RESf;

ie.,

(3.4) o] = vl ol ol T R 1< i< M -1
Let zg =949 =0 ;i =1Ax=1ih,i=0,..., M
xy=ym =1 yi =iAy =1ih,i=0,...,M

Let us consider the following simple cases to understand the scheme (3.4)

Let M =3
Then by (3.4)

o - (vy+ug+o ) = —Rf]
vy — (v3+o]+v3+19) =—Rf,
i — (V5 +ug+o+up) = =R ST
4vj (v3 + v} + 05 +v3) = —h°f3

As on boundary vf = gf ,this can be written as a linear system

Av = by ¢
i.e.
4 -1 -1 0 v} a5 + N —nfl
-1 4 0 -1 va gx + g8 —h2f}
Ap — 2 | _ 3 2 2 | — pg. .
Tl 0 4 1| | e 9% + gi—hf 9.f
0 -1 —1 4] [ 9B + g-nf3

15



Now A can be written as

B I 4 -1 10
A—[_I B]’ WhelreB—[_1 4], I—[O 1]
A is a strictly diagonally dominant matrix. Hence A is invertible. Therefore above linear system

can be solved uniquely.
Now let us consider the case M =4

qof —vd =0 = 40l — R
dvy—vg—vy—v = vh—h'fy
4o —v3 —vd = 4 vk —hif]
df —v3 —vi —vp = v —hfY
4o —v3 —vi—v3—wvl = 0-—h2f3
4o —v3 —vi —v3 = vl —hAfE
dod —v3 —vi = ool - B
s —vd —vi —vd = vi—h2f3
dv§ — vl —vi = vl +vs— hAf3

This can be written as a linear system

Av =bgy ¢
i,e.,
[ 4 -1 0 -1 0 0 0 0 O07[wv]
-1 4 -1 0 -1 0 0 0 0 v3
0 -1 4 0 0-1 0 0 0 vi
-1 0 0 4 -1 0 -1 0 0 v3
Av=1| 0 -1 0 -1 4 =1 0 =1 0 || v3|=byys

0O 0 -1 0 -1 4 0 0 -1 v3
0o 0 0 -1 0 0 4 -1 0 v}
o 0 0 0 -1 0 -1 4 -1 v3
. 0 0 0 0 0 -1 0 -1 4]/ ]

Now A can be written as
B —-I O 4 -1 0
A=| -1 B -1 ,  where B=| -1 4 -1
O -I B 0 -1 4

A is 9 x 9 matrix, B, O(zero matrix) and I are 3 x 3 matrices.
In general (3.4) can be written as

Av =bgy ¢
where
B I O
-1 B -I
A= -1 B -1
0] -1 B

16



where

4 -1 0
-1 4 -1
B =

O -1 4
with A is a matrix of order (M —1)2. B, O and I are matrices of order M — 1. v is a vector
given by

M— M—
fU:(v%’v%a'--’v%/l—l?v%av%""’v%/l—l?"'avl 1’ s Upg— %)

and by is a vector depends on the boundary values.
A is symmetric and positive definite. As A is tridioganal block matix there are several
methods like direct methods or iterative methods to solve the above system.

Convergence : Let u = u(z,y) be the actual solution of the problem and let € = ul — v
where uj = u(wi,y;) = u(ih, jh) and v} is obtained from (3.4). Since Au = f we have

dul — (ulyy +ul_y +ul T T = B2 Ot =0

7

Therefore we have

o1
Le=¢ — (¢ T +e 1+e]+1+e] h=omY) < Mp
for some M > 0. On the boundary €/ = uj —v! =0. Let w(z,y) = 22 + y* and w] = w(ih, jh)

Then
1

L’U):’U)Z_Zl( Z+1+w’l 1+wj+1+wg_1):_h2
Define
&, =€ I 4 Mh2w ] Then
Lé=Le+ MRh?*Lw < Mh* — Mh* =0
=
gL S+l g1
Giﬁz(ei“—i—e L +ET+€eT)

= Eg attains maxima on the boundary

Let r denotes the radius of a circle about the origin enclosing the region Q = (0,1) x (0, 1).
Then '

¢ < maximum of €/ on the boundary +M h2r?

=0+ Mh?r = Mh?r?( because eg = 0 on boundary)
Now define € =€ — M thg . By similar arguments one can show that

gg > —Mr?h®

~Mr?h? < e <€ <& < Mh?r?
= || < Mh%r?

Hence as mesh size goes to zero numerical solution goes to actual solution.
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APPENDIX:

1. Discrete Fourier Transform

Let v = (v;)72 _, be a comlex sequence in I2. Define the discrete Fourier transform of v by

5(&) =D vje i=+—1, £€]0,2n)
J

. Then
(1)
1 27
v =5 / B(€) e M de
0
(2) (Parsevel’s relation)
21
Sl = o= [ o) P
— 27
J 0

Proof: Let
1 21
L?[0,2n] = {f : [0,27] — C,f is measureble and2— / |f(2)]?dx < oo}
T
0

Then {e, = \/LZ—Weim }nen forms an orthonormal basis for L2[0,27]. Therefore we have

27 27
1 y 1 . g
%O/T)({)e_”gd{ = %0/(2”:@”6"‘5)6_”5
2m
= % zﬂ:vn/ei(nj)é)dé“
= Uj. ’
Also,
2m 1 2m
! 0/ PP = o 0/ 9(6) B(€)d



27
% /(Z vne™) (O vjeii€)dg
n J

0

2
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