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1 Distributions

In this section we will, very briefly, recall concepts from the theory of dis-
tributions that we will need in the sequel. For details, see Kesavan [1],
Chapter 1.

Throughout these lectures, we will be working with an open set Ω ⊂ RN .
Let us briefly motivate our study of distributions and Sobolev spaces.

One of the important partial differential equations that we often study is the
Laplace’s equation:

−∆u = f in Ω

together with some appropriate boundary condition. It turns out that in
elasticity and structural engineering, the importance of the solution u stems
from the fact that it minimizes, amongst ‘admissible functions’ v, the energy
functional

J(v) =
1

2

∫
Ω

|∇v|2 dx−
∫

Ω

fv dx.

Now it can happen, in many applications, that the function f is not
continuous but just, say, in L2(Ω). Then, for the second term in the above
expression for J to make sense, it follows that v must also belong to L2(Ω).
The first term in J will make sense if all the first partial derivatives of u, i.e.
∂u
∂xi
, 1 ≤ i ≤ N are all in L2(Ω) as well.

But, when we are dealing with functions in L2(Ω), what do we mean by its
derivatives? This is where we need to generalize the notion of a function and
its derivatives and interpret partial differential equations in the new set-up.
The framework for this comes from the theory of distributions. Just as we
can think of a real number as a linear operator on R acting by multiplication,
we can consider certain functions as linear operators on some special space
of functions and then generalize this.

Definition 1.1 Let f : Ω → R be a continuous function. Its support,
denoted supp(f), is the closure of the set where f is non-zero. The function
is said to be of compact support in Ω if the support is a compact set
contained inside Ω. �

Definition 1.2 The space of test functions in Ω, denoted D(Ω), is the
space of all C∞ functions defined on Ω which have compact support in Ω. �

The space D(Ω) is a very rich space and can be made into a locally convex
topological vector space.

Definition 1.3 The dual of D(Ω) is called the space of distributions,
denoted D′(Ω), on Ω and its elements are called distributions on Ω. �

Example 1.1 A function u : Ω → R is said to be locally integrable
if
∫
K
|u| dx < ∞ for every compact subset K of Ω. A locally integrable

function defines a distribution in the following way: if ϕ ∈ D(Ω), then

u(ϕ) =

∫
Ω

uϕ dx
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where we use the same symbol u for the function as well as the distribution
it generates, for, if u and v generate the same distribution, then it can be
shown that u = v a.e. Now every smooth function and every function in any
of the spaces Lp(Ω), for 1 ≤ p ≤ ∞, are all locally integrable and so they all
can be considered as distributions. �

Example 1.2 Define
T (ϕ) = ϕ(0)

for all ϕ ∈ D(R). This defines a distribution on R and it can be shown that
it cannot be obtained from any locally integrable function in the sense of
Example 1.1 above. This is called the Dirac distribution supported at the
origin and is denoted usually by the symbol δ.�

Example 1.3 Let µ be a measure on Ω such that µ(K) < ∞ for every
compact subset K contained in Ω. Then it defines a distribution given by

Tµ(ϕ) =

∫
Ω

ϕ dµ

for every ϕ ∈ D(Ω). The Dirac distribution mentioned above is just the
distribution generated by the Dirac measure supported at the origin.

Example 1.4 Define the distribution T on R by

T (ϕ) = ϕ′(0)

for every ϕ ∈ D(R). This distribution does not fall into any of the categories
of the preceding examples and is an entirely new object. It is called the
dipole distribution. �

Assume that u : R→ R is a smooth function. Then, so is its derivative u′,
and both of them define distributions as in Example 1.1. Now, if ϕ ∈ D(R),
then, by integration by parts, we have∫

R
u′ϕ dx = −

∫
R
uϕ′ dx.

Similarly, ∫
R
u′′ϕ dx = −

∫
R
u′ϕ′ dx =

∫
R
uϕ′′ dx

and so on. We can use this to define the derivative of any distribution T on
R as follows: if T is a distribution on R, then, for any positive integer k,
define the distribution dkT

dxk
by

dkT

dxk
(ϕ) = (−1)kT (ϕ(k))

for any ϕ ∈ D(R), where ϕ(k) = dkϕ
dxk

. We can do this on any open subset
Ω ⊂ RN , for any space dimension N . To describe it we first establish some
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useful notation.

Notation
A multi-index α is an N -tuple of non-negative integers. Thus,

α = (α1, · · · , αN)

where the αi are all non-negative integers. We define

|α| =
N∑
i=1

αi;

xα = xα1
1 x

α2
2 · · ·x

αN
N

for x = (x1, x2, · · · , xn) ∈ RN ;

Dα =
∂|α|

∂xα1
1 · · · ∂x

αN
N

.

Definition 1.4 If T ∈ D′(Ω) is a distribution on an open set Ω ⊂ RN , and
if α is any multi-index, we can define the distribution DαT by

DαT (ϕ) = (−1)|α|T (Dαϕ)

for all ϕ ∈ D(Ω). �

Thus, by this trick of transfering the burden of differentiation onto elements
of D(Ω), every distribution becomes infinitely differentiable.

Example 1.5 The dipole distribution (cf. Example 1.4) is nothing but − dδ
dx

,
where δ is the Dirac distribution (cf. Example 1.2). �

Example 1.6 Consider the Heaviside function H : R→ R, defined by

H(x) =

{
1, ifx > 0,
0, ifx ≤ 0.

This is locally integrable and so defines a distribution. If ϕ ∈ D(R), then

dH

dx
(ϕ) = −

∫ ∞
−∞

H(x)ϕ′(x) dx = −
∫ ∞

0

ϕ′(x) dx = ϕ(0) = δ(ϕ).

Thus, eventhough H is differentiable almost everywhere in the classical sense
with the classical derivative being equal to zero a.e. (which is trivially a
locally integrable function), the distribution derivative is not zero, but the
Dirac distribution. �

This leads us to the following question: if a locally integrable function u
admits a classical derivative (a.e.), denoted u′, which is also locally integrable,
when can we say that the classical and distributional derivatives of u are the
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same? The answer lies in the integration by parts formula. If, for every
ϕ ∈ D(Ω) we have ∫

u′ϕ dx = −
∫
uϕ′ dx,

then the classical derivative is also the distributional derivative. This obvi-
ously happens when u is a smooth function. It is also true for absolutely
continuous functions, cf. Kesavan [1].

In this context, we can also ask the following question. We know that
if u is a differentiable function on R such that u′ ≡ 0, then u is a constant
function. Does the same hold for the distribution derivative? That is, if T is
a distribution so that dT

dx
is the zero distribution, then, is T the distribution

generated by a constant function? In other words, does there exist a constant
c ∈ R such that, for every ϕ ∈ D(R), we have

T (ϕ) = c

∫
R
ϕ dx?

We claim that this is indeed the case. If dT
dx

= 0, then for every ϕ ∈ D(R), we
have T (ϕ′) = 0. Thus we need to know when an arbitrary member of D(R)
can be expressed an the derivative of another member of the same space.

Lemma 1.1 Let ϕ ∈ D(R). Then, there exists ψ ∈ D(R) such that ψ′ = ϕ,
if, and only if,

∫
R ϕ dx = 0.

Proof: If ϕ = ψ′ with ψ of compact support, then clearly
∫
R ϕ dx = 0.

Conversely, let supp(ϕ) ⊂ [−a, a] ⊂ R. Define

ψ(x) =

{
0, ifx ≤ −a,∫ x
−a ϕ(t) dt, ifx > −a.

Then, clearly ψ is infinitely differentiable and, by the given condition, has
support in [−a, a] as well. Its derivative is obviously ϕ. �

Now, let ϕ0 ∈ D(R) be chosen such that
∫
R ϕ0(t) dt = 1. Then, given any

ϕ ∈ D(R), define

ϕ1 = ϕ−
(∫

R
ϕ dx

)
ϕ0 ∈ D(R).

Then the integral of ϕ1 over R vanishes. So ϕ1 = ψ′ for some ψ ∈ D(R). If
dT
dx

= 0, then, by definition, we have that T (ψ′) = 0 and so we get

T (ϕ) =

(∫
R
ϕ dx

)
T (ϕ0)

which establishes our claim with c = T (ϕ0). Note that whatever the function
ϕ0 we may choose in D(R) whose integral is unity, the value of T (ϕ0) is the
same (why?) so that c is well-defined.

We conclude this section by mentioning two very useful collections of
smooth functions.
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Consider the following function defined on RN .

ρ(x) =

{
e
− 1

1−|x|2 , if|x| < 1,
0, if|x| ≥ 1,

where |x| is the euclidean length of the vector x ∈ RN . It can be shown that
this is a function in D(RN), with support in B(0; 1), the ball centred at the
origin and of unit radius. Let

k =

∫
RN
ρ(x) dx.

Definition 1.5 The family of mollifiers {ρε}ε>0 is the collection of func-
tions defined by

ρε(x) = k−1ρ(x/ε). �

Then it is easy to see that ρε ∈ D(RN) with support B(0; ε), the ball centered
at the origin and of radius ε and is such that∫

RN
ρε(x) dx =

∫
B(0;ε)

ρε(x) dx = 1

for all ε > 0.

Definition 1.6 Let {Ui}mi=1 be open sets whose union is U . Then a C∞-
partition of unity, subordinate to the collection {Ui}mi=1 is a collection
{ψi}mi=1 of C∞ functions defined on U such that
(i) supp(ψi) ⊂ Ui, for all 1 ≤ i ≤ m;
(ii) 0 ≤ ψi(x) ≤ 1, for all x ∈ U and for all 1 ≤ i ≤ m;
(iii)

∑m
i=1 ψi(x) = 1, for all x ∈ U. �

2 Sobolev Spaces

Let Ω ⊂ RN be an open set and let ∂Ω denote its boundary.

Definition 2.1 Let m be a positive integer and let 1 ≤ p ≤ ∞. The Sobolev
Space Wm,p(Ω) is defined by

Wm,p(Ω) = {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω), for all |α| ≤ m}. �

The space Wm,p(Ω) is a vector space contained in Lp(Ω) and we endow it
with the norm ‖.‖m,p,Ω defined as follows.

‖u‖m,p,Ω =

∑
|α|≤m

‖Dαu‖pLp(Ω)

 1
p

if 1 ≤ p <∞ and
‖u‖m,∞,Ω = max

|α|≤m
‖Dαu‖L∞(Ω).
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Notations and conventions

• When p = 2, we will write Hm(Ω) instead of Wm,2(Ω). The corre-
sponding norm ‖.‖m,2,Ω will be written as ‖.‖m.,Ω and it is generated by
the inner-product

(u, v)m,Ω =
∑
|α|≤m

∫
Ω

DαuDαv dx.

• We define a semi-norm om Wm,p(Ω) by

|u|m,p,Ω =

∑
|α|=m

‖Dαu‖pLp(Ω)

 1
p

when 1 ≤ p <∞ and

|u|m,∞,Ω = max
|α|=m

‖Dαu‖L∞(Ω).

• For consistency, we define W 0,p(Ω) to be Lp(Ω). Henceforth the norm
in Lp(Ω) will be denoted as |.|0,p,Ω when p 6= 2 and by |.|0,Ω when p = 2.

It follows from the definition of these spaces that the mapping

u 7→
(
u,

∂u

∂x1

, · · · , ∂u
∂xN

)
is an isometry from W 1,p(Ω) onto a subspace of (Lp(Ω))N+1.

Theorem 2.1 The space W 1,p(Ω) is complete. It is reflexive if 1 < p < ∞
and separable if 1 ≤ p < ∞. In particular, H1(Ω) is a separable Hilbert
space.

Proof: Let {un} be a Cauchy sequence in W 1,p(Ω). Then {un}, {∂un∂xi
}, 1 ≤

i ≤ N are all Cauchy sequences in Lp(Ω). Thus, there exist functions u and
vi, 1 ≤ i ≤ N in Lp(Ω) such that un → u and ∂un

∂xi
→ vi, 1 ≤ i ≤ N in Lp(Ω).

Now, let ϕ ∈ D(Ω). Then∫
Ω

∂un
∂xi

ϕ dx = −
∫

Ω

un
∂ϕ

∂xi
dx

by the definition of the distribution derivative. Since D(Ω) ⊂ Lq(Ω) for any
1 ≤ q ≤ ∞, in particular, it is true when q is the conjugate exponent of p.
Hence, we can pass to the limit in the above relation to get∫

Ω

viϕ dx = −
∫

Ω

u
∂ϕ

∂xi
dx

for each 1 ≤ i ≤ N . This shows that

∂u

∂xi
= vi ∈ Lp(Ω), 1 ≤ i ≤ N
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and so it follows that u ∈ W 1,p(Ω) and that un → u in W 1,p(Ω). This proves
the completeness of the spaces W 1,p(Ω).

The image of W 1,p(Ω) in (Lp(Ω))N+1 via the isometry described above
is thus a closed subspace and so it inherits the reflexivity and separability
properties of (Lp(Ω))N+1. This completes the proof of the theorem. �

Remark 2.1 Let {un} be a sequence in W 1,p(Ω), 1 < p < ∞. Let un → u
in Lp(Ω) and let {∂un

∂xi
} be bounded in Lp(Ω) for all 1 ≤ i ≤ N . Then, since

Lp(Ω) is reflexive, it follows that there exists a subsequence {unk} such that

∂unk
∂xi

⇀ vi

weakly in Lp(Ω). Thus if ϕ ∈ D(Ω), then we have∫
Ω

∂unk
∂xi

ϕ dx = −
∫

Ω

unk
∂ϕ

∂xi
dx

from which we deduce that∫
Ω

viϕ dx = −
∫

Ω

u
∂ϕ

∂xi
dx

so that it follows that u ∈ W 1,p(Ω) and that ∂u
∂xi

= vi. This is a very useful

observation. Since L1(Ω) is separable, the same idea will also work for the
case p =∞. �

Remark 2.2 Theorem 2.1 is true for all spaces Wm,p(Ω). �

Definition 2.2 The closure of the subspace D(Ω) in Wm,p(Ω) is the closed
subspace Wm,p

0 (Ω) �.

We will see later that, in general, Wm,p
0 (Ω) is a proper closed subspace

of Wm,p(Ω). We will, however, see in the next section that the two spaces
coincide when Ω = RN .

3 The case Ω = RN .

Let p = 2 and consider the case Hm(RN). If u belongs to this space, then it
follows that u,Dαu ∈ L2(RN), for all |α| ≤ m. Now, for a square integrable
function on RN , we can define its Fourier transform, which will also be square
integrable on RN , and by the Plancherel theorem, the L2-norms of both the
function and its Fourier transform will be the same. Further, we also know
that

D̂αu(ξ) = (2πi)|α|ξαû(ξ)

for ξ ∈ RN . Thus it follows that if u ∈ Hm(RN), then û(.) and ξ 7→
ξαû(ξ), |α| ≤ m are all in L2(RN), and conversely.
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We can see easily that the same powers of ξ occur both in (1 + |ξ|2)m

and in the sum
∑
|α|≤m |ξα|2 and so we have the existence of two constants

M1 > 0 and M2 > 0, which depend only on m and N , such that

M1(1 + |ξ|2)m ≤
∑
|α|≤m

|ξα|2 ≤ M2(1 + |ξ|2)m.

Consequently, we can write

Hm(Ω) = {u ∈ L2(RN) | (1 + |ξ|2)
m
2 û(ξ) ∈ L2(RN)}.

By the Plancherel theorem, it also follows that the norm defined by the
following relation is equivalent to the norm in Hm(RN) and we will denote
it by the same symbol:

‖u‖2
m,RN =

∫
RN

(1 + |ξ|2)m|û(ξ)|2 dξ.

Lemma 3.1 Let {ρε}ε>0 be the family of mollifiers.
(i) If u : RN → R is continuous, then ρε ∗ u→ u pointwise, as ε→ 0.
(ii) If u : RN → R is continuous with compact support, then ρε ∗ u → u
uniformly, as ε→ 0.
(iii) If u ∈ Lp(RN), then ρε ∗ u→ u in Lp(RN), for 1 ≤ p <∞.

Proof: (i) Let x ∈ RN . Then, given η > 0, there exists δ > 0 such that for
all |y| < δ, we have |u(x− y)− u(x)| < η. Thus, if ε < δ, we have

|ρε ∗ u(x)− u(x)| ≤
∫
|y|≤ε
|u(x− y)− u(x)|ρε(y) dy < η

∫
|y|≤ε

ρε(y) dy = η.

This proves the first statement.
(ii) If supp(u) = K which is compact, then

supp(ρε ∗ u) ⊂ K +B(0; ε)

which is compact and is contained within a fixed compact set, say, K+B(0; 1)
if we restrict ε to be less than or equal to unity. On this compact set, u is
uniformly continuous and the δ corresponding to η in the previous step is now
independent of the point x and so the pointwise convergence is now uniform.
(iii) From the step (ii) above it is immediate that if u is continuous with
compact support in RN , then ρε ∗ u converges to u in Lp(RN) as well, since
the entire family is supported in a single compact set and the convergence
there is uniform. Now, we know that continuous functions with compact
support are dense in Lp(RN) for 1 ≤ p < ∞ and so given u ∈ Lp(RN), we
can find, for every η > 0, a continuous function g with compact support such
that

|u− g|0,p,RN <
η

3
.

Then, for ε sufficiently small, we have

|ρε ∗ g − g|0,p,RN <
η

3
.
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Then

|ρε ∗ u− u|0,p,RN ≤ |u− g|0,p,RN + |g − ρε ∗ g|0,p,RN + |ρε ∗ (g − u)|0,p,RN .

But by Young’s inequality

|ρε ∗ (g − u)|0,p,RN ≤ |ρε|0,1,RN |g − u|0,p,RN <
η

3

since the integral of ρε is unity and the result now follows immediately. �

Theorem 3.1 For 1 ≤ p <∞, we have

Wm,p
0 (RN) = Wm,p(RN).

Proof: We will prove it for m = 1.

Step 1. Let {ρε}ε>0 be the family of mollifiers. Then, if u ∈ W 1,p(RN), it
follows from the preceding lemma that ρε ∗ u → u in Lp(RN). Also, since
Dα(ρε ∗ u) = ρε ∗ Dαu, for any multi-index α, it follows, again from the
preceding lemma, that ρε ∗ u→ u in W 1,p(RN) as well. Further, notice that
ρε ∗ u ∈ C∞(RN), by the properties of convolutions.

Step 2. Let ζ ∈ D(RN), be such that 0 ≤ ζ ≤ 1, ζ ≡ 1 on B(0; 1) and
supp(ζ) ⊂ B(0; 2). For every positive integer k, define

ζk(x) = ζ(x/k).

Then ζk ≡ 1 on B(0; k) and supp(ζk) ⊂ B(0; 2k). Thus ζk ∈ D(RN). Choose
a sequence εk decreasing to zero. Let uk = ρεk ∗ u. Define

ϕk = ζkuk.

Then ϕk ∈ D(RN). From the properties of ζ it now follows that ϕk = uk on
B(0; k) and also that |ϕk| ≤ |uk|. Thus,

|uk − ϕk|p0,p,RN =

∫
|x|>k
|uk − ϕk|p dx ≤ 2p

∫
|x|>k
|uk|p dx.

Now, by the triangle inequality (Minkowski’s inequalty), we have(∫
|x|>k
|uk|p dx

) 1
p

≤
(∫
|x|>k
|uk − u|p dx

) 1
p

+

(∫
|x|>k
|u|p dx

) 1
p

.

The first term on the right hand-side of the above inequlaity can be made as
small as we please for large k since uk → u in Lp(RN). The second term can
also be made as small as we please for large k, since it represents the tail of
a convergent integral over RN . Thus, ϕk → u in Lp(RN).

Step 3. Notice that

∂ϕk
∂xi

= ζk
∂uk
∂xi

+ uk
∂ζk
∂xi

, 1 ≤ i ≤ N.
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Then, since the derivatives of uk converge to those of u in Lp(RN), we have
that the first term in the above relation converges to ∂u

∂xi
in Lp(RN), exactly

as in Step 2 above. Further

∂ζk
∂xi

=
1

k

∂ζ

∂xi

(x
k

)
.

Since the derivatives of ζ are uniformly bounded, we deduce that

uk
∂ζk
∂xi

→ 0

in Lp(RN). Thus, it follows that

∂ϕk
∂xi

→ ∂u

∂xi

in Lp(RN) for all 1 ≤ i ≤ N . Hence it follows that ϕk → u in W 1,p(RN) and
so u ∈ W 1,p

0 (RN). This completes the proof. �

4 Friedrich’s theorem and applications

In the preceding section we saw that any element of W 1,p(RN) can be ap-
proximated by functions from D(RN). We now investigate to what extent we
can approximate functions in Wm,p(Ω) by smooth functions when Ω ⊂ RN

is a proper open subset. We begin with a useful technical lemma.

Lemma 4.1 Let u : Ω → R. Define ũ : RN → R by its extension by zero
outside Ω, i.e.

ũ(x) =

{
u(x), ifx ∈ Ω,
0, ifx 6∈ Ω.

Then, if u ∈ W 1,p(Ω) and if ψ ∈ D(Ω), we have ψ̃u ∈ W 1,p(RN) and, for all
1 ≤ i ≤ N ,

∂

∂xi
(ψ̃u) =

(
ψ
∂u

∂xi
+
∂ψ

∂xi
u

)∼
.

Proof: Since the extension by zero maps functions in Lp(Ω) into functions

in Lp(RN), it is enough to prove the formula for the derivatives of ψ̃u given
in the statement of the lemma. Let ϕ ∈ D(RN). Then∫

RN ψ̃u
∂ϕ
∂xi

dx =
∫

Ω
ψu ∂ϕ

∂xi
dx =

∫
Ω
u
(
∂(ψϕ)
∂xi
− ϕ ∂ψ

∂xi

)
dx

= −
∫

Ω
∂u
∂xi
ψϕ dx−

∫
Ω
u ∂ψ
∂xi
ϕ dx

= −
∫
RN

(
ψ ∂u
∂xi

+ u ∂ψ
∂xi

)∼
ϕ dx

which completes the proof. �

Theorem 4.1 (Friedrichs) Let 1 ≤ p < ∞. Let Ω ⊂ RN be an open set
and let u ∈ W 1,p(Ω). Then, there exists a sequence {un} in D(RN) such that
un → u in Lp(Ω) and ∂un

∂xi
→ ∂u

∂xi
in Lp(Ω′) for any relatively compact open

set Ω′ of Ω.
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Proof: Let, as before, ũ denote the extension of u by zero outside Ω. Then
if {ρε}ε>0 denotes the family of mollifiers, we know that (cf. Lemma 3.1)
ρε ∗ ũ→ ũ in Lp(RN) and so ρε ∗ ũ→ u in Lp(Ω). Now, let Ω′ ⊂⊂ Ω. Then
we can find another relatively compact open subset Ω′′ such that

Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω.

Let ψ ∈ D(Ω) be such that ψ ≡ 1 in Ω′′. Let d = d(∂Ω′, ∂Ω′′) > 0. Now,

supp(ρε ∗ ψ̃u− ρε ∗ ũ) = supp(ρε ∗ (1− ψ)ũ)
⊂ B(0; ε) + supp(1− ψ)

which will be contained in RN\Ω′ if ε < d. Thus

ρε ∗ ψ̃u = ρε ∗ ũ in Ω′.

Now, ρε ∗ ψ̃u ∈ W 1,p(RN) and

∂(ρε ∗ ψ̃u)

∂xi
= ρε ∗

∂(ψ̃u)

∂xi
= ρε ∗

(
∂ψ

∂xi
u+

∂u

∂xi
ψ

)∼
which converges, in Lp(RN) to(

∂ψ

∂xi
u+

∂u

∂xi
ψ

)∼
.

In particular, in Lp(Ω′), we have

∂(ρε ∗ ũ)

∂xi
=

∂(ρε ∗ ψ̃u)

∂xi
→ ∂u

∂xi
.

Thus, for a sequence εk ↓ 0, we have constructed vk = ρεk ∗ ũ such that
vk ∈ C∞(RN), vk → u in Lp(Ω) and such that, for all 1 ≤ i ≤ N , ∂vk

∂xi
→ ∂u

∂xi
in Lp(Ω′), for any relatively compact open subset Ω′ contained in Ω. Now let
ζk be as in the proof of Theorem 3.1 and set uk = ζkvk which will have the
same convergence properties as the sequence {vk}. �

Thus, given u ∈ W 1,p(Ω), while we can approximate it in Lp(Ω) by
smooth functions, its derivatives can be approximated by the correspond-
ing sequences of derivatives only in Lp of relatively compact subsets. We
then ask ourselves whether it is at all possible to approximate elements in
W 1,p(Ω) by smooth functions.

Definition 4.1 Let Ω ⊂ RN be an open set. A bounded linear operator P :
W 1,p(Ω)→ W 1,p(RN) is said to be an extension operator if the restriction
of Pu to Ω is u for every u ∈ W 1,p(Ω). �

Theorem 4.2 If there exists an extension operator on W 1,p(Ω), then given
u ∈ W 1,p(Ω), there exists a sequence {un} in D(RN) such that un → u in
W 1,p(Ω).
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Proof: There exists a sequence {un} in D(RN) converging to Pu in W 1,p(Ω),
as proved in Theorem 3.1. Since Pu = u in Ω, the result follows immediately.
�

Corollary 4.1 If there exists an extension operator on W 1,p(Ω), then C∞(Ω)
is dense in W 1,p(Ω). �

Example 4.1 Let

RN
+ = {x = (x1, · · · , xN) ∈ RN | xN > 0}

be the upper half space. Then it admits an extension operator which is
defined in the following way. Set x = (x′, xN) where x′ = (x1, · · · , xN−1) ∈
RN−1. Define

Pu(x) =

{
u(x′, xN) if xN > 0,
u(x′,−xN) if xN < 0.

It can be shown that P defines an exiension operator from W 1,p(RN
+ ) to

W 1,p(RN). �

Definition 4.2 Let Ω ⊂ RN be an open subset such that its boundary ∂Ω
is bounded (and hence compact). Let Q be a unit cube in RN with centre at
the origin and with edges parallel to the coordinate axes. Let Q+ = Q ∩ RN

+

and let Q0 = Q ∩ RN−1. The domain Ω is said to be of class Ck, where k is
a non-negative integer, if for every x ∈ ∂Ω, we can find a neighbourhood U
of x in RN and a bijective map T : Q → U such that both T and T−1 are
Ck-maps on Q and U respectively and the following relations hold:

T (Q+) = U ∩ Ω and T (Q0) = U ∩ ∂Ω. �

Example 4.2 If Ω ⊂ RN is an open set such that its boundary is bounded
and is of class C1, then there exists an extension operator on W 1,p(Ω). �.

We now look at some very useful applications of Friedrich’s theorem.

Theorem 4.3 (Chain Rule) Let 1 ≤ p ≤ ∞. Let Ω ⊂ RN be an open subset.
Let G : R → R be a continuously differentiable map such that G(0) = 0.
Assume, further, that there exists a positive constant M such that |G′(s)| ≤
M for all s ∈ R. Then, if u ∈ W 1,p(Ω), we have G ◦ u ∈ W 1,p(Ω) and,

∂(G ◦ u)

∂xi
= (G′ ◦ u)

∂u

∂xi
, 1 ≤ i ≤ N,

where (G ◦ u)(x) = G(u(x)).

Proof: Since G(0) = 0, by the mean value theorem, it follows that |G(s)| ≤
Ms, for all s ∈ R. Thus, it follows that both G ◦ u and (G′ ◦ u) ∂u

∂xi
are in

Lp(Ω). Thus it suffics to prove the formula for the derivative of G ◦ u given
in the statement above to prove the theorem.
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Case 1: Let 1 ≤ p < ∞. Let {un} be a sequence in D(RN) as in Friedrich’s
theorem. Then, it is clear that G ◦ un → G ◦ u in Lp(Ω) and also that, for a
subsequence that we will henceforth work with and therefore continue to de-
note as {un}, G′(un(x))→ G′(u(x)) almost everywhere. Now, let ϕ ∈ D(Ω).
Choose a relatively compact subset Ω′ contained in Ω such that supp(ϕ) ⊂ Ω′.
Since un is smooth, we have by the classical Green’s theorem (integration by
parts)∫

Ω

(G ◦ un)
∂ϕ

∂xi
dx =

∫
Ω′

(G ◦ un)
∂ϕ

∂xi
dx = −

∫
Ω′

(G′ ◦ un)
∂un
∂xi

ϕ dx.

Then, with the convergences observed above and those guaranteed by Friedrich’s
theorem, we get, on passing to the limit,∫

Ω

(G ◦ u)
∂ϕ

∂xi
dx = −

∫
Ω′

(G′ ◦ u)
∂u

∂xi
ϕ dx = −

∫
Ω

(G′ ◦ u)
∂u

∂xi
ϕ dx

which proves the result.

Case 2: Let p = ∞. If ϕ ∈ D(Ω), choose Ω′ as before. Then u ∈ W 1,∞(Ω)
implies that u ∈ W 1,∞(Ω′) and hence in W 1,q(Ω′) for any 1 ≤ q <∞ since Ω′

is compact. Thus, the calculations in the preceding case are still valid and
the result follows. �

Remark 4.1 The condition G(0) = 0 was used only to prove that if u ∈
Lp(Ω),then so does G ◦ u. If Ω were bounded, then constant functions are
in Lp(Ω) for all 1 ≤ p ≤ ∞ and the mean value theorem yields |G(u(x))| ≤
|G(0)| + M |u(x)| which shows that G ◦ u ∈ Lp(Ω) and so the condition
G(0) = 0 is no longer necessary in that case. �

Theorem 4.4 Let Ω ⊂ RN be a bounded open set. Let 1 < p < ∞. If
u ∈ W 1,p(Ω), then |u| ∈ W 1,p(Ω) and

∂|u|
∂xi

= sgn(u)
∂u

∂xi
, 1 ≤ i ≤ N

where

sgn(u)(x) =


+1, if u(x) > 0,

0, if u(x) = 0,
−1, if u(x) < 0.

Proof: Let ε > 0. Let fε(t) =
√
t2 + ε. Then fε ∈ C1(R) and

f ′ε(t) =
t√
t2 + ε

which shows that |f ′ε(t)| ≤ 1. Since Ω is bounded, the chain rule holds (even
though fε(0) 6= 0). Thus, u ∈ W 1,p(Ω) implies that fε ◦ u ∈ W 1,p(Ω) and

∂(fε ◦ u)

∂xi
=

u√
u2 + ε

∂u

∂xi
, 1 ≤ i ≤ N.
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Now, |fε(t)− |t| | ≤
√
ε. Hence fε ◦ u→ |u| in Lp(Ω). Further,∫

Ω

∣∣∣∣∂(fε ◦ u)

∂xi

∣∣∣∣p dx ≤ ∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx

which is bounded. Thus, since 1 < p <∞, we deduce that (cf. Remark 2.1)
|u| ∈ W 1,p(Ω) and that

∂|u|
∂xi

= lim
ε→0

∂(fε ◦ u)

∂xi

in Lp(Ω) if that limit exists. But

u√
u2 + ε

∂u

∂xi
→ sgn(u)

∂u

∂xi

pointwise and since the p-th powers of the absolute values of all these func-
tions are bounded by | ∂u

∂xi
|p, it follows from the dominated convergence theo-

rem that the Lp-norms of these functions converge to the Lp-norm of ∂u
∂xi

. The
pointwise convergence and the convergence of the norm implies convergence
in Lp and this completes the proof. �

Theorem 4.5 Let Ω ⊂ RN be a bounded open set and let 1 < p < ∞. Let
u ∈ W 1,p(Ω). Then, for any t ∈ R, and for any 1 ≤ i ≤ N , we have that
∂u
∂xi

= 0 almost everywhere on the set {x ∈ Ω | u(x) = t}.

Proof: Let u ≥ 0. Then u = |u|. Thus,

sgn(u)
∂u

∂xi
=

∂|u|
∂xi

=
∂u

∂xi
.

It then follows that on the set {x ∈ Ω | u(x) = 0}, we have that ∂u
∂xi

= 0

almost everywhere. If u ∈ W 1,p(Ω), then u = u+ − u−, where

u+ =
1

2
(|u|+ u), u− =

1

2
(|u| − u).

Then

{x ∈ Ω | u(x) = 0} = {x ∈ Ω | u+(x) = 0} ∩ {x ∈ Ω | u−(x) = 0}.

Then ∂u
∂xi

= ∂(u+)
∂xi
− ∂(u−)

∂xi
= 0 almost everywhere on this set. For any t ∈ R,

consider the function u− t. �

Remark 4.2 Notice that the set {x ∈ Ω | u(x) = t} may itself be of measure
zero, in which case the above result gives no new information. However, if
the function takes a constant value on a set of positive measure, then its
derivative vanishes almost everywhere in that set. �
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Theorem 4.6 (Stampacchia) Let Ω ⊂ RN be a bounded open set and let
1 < p < ∞. Let f : R → R be a Lipschitz continuous function. Then, if
u ∈ W 1,p(Ω), we have f ◦ u ∈ W 1,p(Ω) and if f ′ is continuous except at a
finite number of points {t1, · · · , tk}, then

∂(f ◦ u)

∂xi
(x) = vi

def
=

{
(f ′ ◦ u) ∂u

∂xi
(x), if u(x) 6∈ {t1, · · · , tk},

0, otherwise.

Proof: First of all, it follows from the Lipschitz continuity of f and the
boundedness of Ω that f ◦ u ∈ Lp(Ω). If M is the Lipschitz constant of f ,
then we also have that |f ′(t)| ≤M . Then it also follows that vi ∈ Lp(Ω) for
1 ≤ i ≤ N .

Let {ρε}ε>0 denote the family of mollifiers in R. Choose a sequence εn ↓ 0
and set fn = ρεn ∗ f . Then fn ∈ C∞(R) and (cf. Lemma 3.1) fn(t) → f(t)
for all t ∈ R. Now,

|fn(t)− fn(t′)| =
∣∣∣∫|s|<εn(f(t− s)− f(t′ − s))ρεn(s) ds

∣∣∣
≤ M |t− t′|

∫
|s|<εn ρεn(s) ds = M |t− t′|.

Thus, it follows that |f ′n(t)| ≤M for all t ∈ R. We also have that fn◦u→ f◦u
in Lp(Ω) since for any x ∈ Ω,

|fn(u(x))− f(u(x))| =

∣∣∣∣∫
|s|<εn

(f(u(x)− s)− f(u(x)))ρεn(s) ds

∣∣∣∣ ≤ Mεn

which implies that fn ◦ u → f ◦ u uniformly on Ω and, as Ω is bounded, in
Lp(Ω) as well. Now, fn ◦ u ∈ W 1,p(Ω) and

∂(fn ◦ u)

∂xi
= (f ′n ◦ u)

∂u

∂xi

which is clearly bounded in Lp(Ω). Thus, by Remark 2.1, we do have that
f ◦ u ∈ W 1,p(Ω) and that

∂(f ◦ u)

∂xi
= lim

n→∞

∂(fn ◦ u)

∂xi

in Lp(Ω), if that limit exists.
Now, assume that the derivative of f exists and is continuous except at

a finite number of points {ti}ki=1. Let Ei = {x ∈ Ω | u(x) = ti}, 1 ≤ i ≤ k.
Set E = ∪ki=1Ei. Then

(f ′n ◦ u)
∂u

∂xi
→ (f ′ ◦ u)

∂u

∂xi

on Ω\E. On E, we have that ∂u
∂xi

= 0 almost everywhere by the preceding

theorem. Thus (f ′n ◦ u) ∂u
∂xi

= 0 almost everywhere on E. It follows that
∂fn◦u
∂xi
→ vi pointwise almost everywhere in Ω. Also∣∣∣∣(f ′n ◦ u)

∂u

∂xi
− vi

∣∣∣∣ ≤ 2M

∣∣∣∣ ∂u∂xi
∣∣∣∣
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and so by the dominated convergence theorem, we deduce that the limit in
Lp(Ω) of ∂((fn◦u)

∂xi
is indeed vi for all 1 ≤ i ≤ N , which completes the proof.

�

Proposition 4.1 Let u ∈ W 1,p(Ω), 1 ≤ p < ∞. Let K ⊂ Ω be compact. If
u vanishes on Ω\K, then u ∈ W 1,p

0 (Ω).

Proof: Choose relatively compact sets Ω′′ and Ω′ such that

K ⊂ Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω.

Let ψ ∈ D(Ω) such that ψ ≡ 1 on Ω′′ and such that supp(ψ) ⊂ Ω′. Then
ψu = u. Let {un} be a sequence in D(RN) such that un → u in Lp(Ω) and
∂un
∂xi
→ ∂u

∂xi
in Lp of all relatively compact open subsets of Ω.Then ψun ∈ D(Ω)

and ψun → ψu = u in W 1,p(Ω) since all the supports are contained in
Ω′ ⊂⊂ Ω. This shows that u ∈ W 1,p

0 (Ω). �

Proposition 4.2 Let Ω be bounded and let 1 < p < ∞. If f : R → R is a
Lipschitz continuous function such that f(0) = 0 and whose derivative exists
and is continuous except at a finite number of points, then, if u ∈ W 1,p

0 (Ω),we
also have f ◦ u ∈ W 1,p

0 (Ω).

Proof: Let {un} be a sequence in D(Ω) converging in W 1,p(Ω) to u. Then,
since f is Lipschitz continuous, we have

|f(un(x))− f(u(x))| ≤ M |un(x)− u(x)|

and it is now immediate that f ◦ un → f ◦ u in Lp(Ω). Further, it is clear
from the formula for the derivatives that f ′ ◦ un is bounded in Lp(Ω). Thus
it follows that, for a subsequence,f ◦ unk ⇀ f ◦ u weakly in W 1,p(Ω) (cf.
Remark 2.1). But, since f(0) = 0, it follows that f ◦ un vanishes outside
the support of un, which is compact. Thus, by the preceding proposition,
f ◦un ∈ W 1,p

0 (Ω) and so it follows that f ◦u ∈ W 1,p
0 (Ω) as well (since a closed

subspace is also weakly closed). �
In particular, if u ∈ W 1,p

0 (Ω), it follows that the functions |u| ∈ W 1,p
0 (Ω)

and so we also have that u+ and u− are in W 1,p
0 (Ω). This fact is very useful

when deriving maximum principles for second order elliptic partial differential
equations. Stampacchia’s theorem is not valid in spacesWm,p(Ω) whenm > 1
and this will, in some sense, explain why we do not have good maximum
principles for higher order elliptic problems.

5 Poincaré’s inequality

In the previous section, we saw that the existence of an extension operator for
W 1,p(Ω) depended on the nature of the domain. In general, the extension by
zero will not map W 1,p(Ω) into W 1,p(RN). For example, let Ω = (0, 1) ⊂ R
and consider the function u ≡ 1 in Ω. Then ũ ∈ Lp(R) for any 1 ≤ p ≤ ∞.
But

dũ

dx
= δ0 − δ1
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where δ0(ϕ) = ϕ(0) and δ1(ϕ) = ϕ(1) for ϕ ∈ D(R), and this cannot come
from any locally integrable function, as already observed earlier.

We will now show that, irrespective of the nature of the domain, the
extension by zero provides an extension operator from W 1,p

0 (Ω) to W 1,p(RN)
for all 1 ≤ p <∞.

Theorem 5.1 Let 1 ≤ p <∞. Let ũ denote the extension by zero outside Ω
for any function u defined on Ω ⊂ RN . Then, if u ∈ W 1,p

0 (Ω), we have that
ũ ∈ W 1,p(RN) and that

∂ũ

∂xi
=

∂̃u

∂xi
, 1 ≤ i ≤ N.

Proof: The extension by zero maps functions in Lp(Ω) into the space Lp(RN).
Thus it suffices to prove the above formula for the derivatives of ũ.

Since u ∈ W 1,p
0 (Ω), let {un} be a sequence in D(Ω) converging to u in

W 1,p(Ω). Let ϕ ∈ D(RN). Then, by classical integration by parts for smooth
functions, we have ∫

Ω

un
∂ϕ

∂xi
dx = −

∫
Ω

∂un
∂xi

ϕ dx.

There is no boundary term since un ∈ D(Ω). Passing to the limit, we see
that ∫

Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

∂u

∂xi
ϕ dx.

In other words, ∫
RN
ũ
∂ϕ

∂xi
dx = −

∫
RN

∂̃u

∂xi
ϕ dx

which completes the proof. �

Theorem 5.2 (Poincaré’s inequality) Let Ω ⊂ RN be a bounded open subset.
Let 1 ≤ p <∞. Then there exists a constant C = C(p,Ω) > 0 such that

|u|0,p,Ω ≤ C|u|1,p,Ω

for all u ∈ W 1,p
0 (Ω). In particular, the mapping u 7→ |u|1,p,Ω is a norm on

W 1,p
0 (Ω) which is equivalent to the norm ‖u‖1,p,Ω. On H1

0 (Ω), the bilinear
form

< u, v >1,Ω =

∫
Ω

N∑
i=1

∂u

∂xi

∂v

∂xi
dx =

∫
Ω

∇u.∇v dx

defines an inner-product yielding the norm |.|1,Ω which is equivalent to the
norm ‖.‖1,Ω.

Proof: Let Ω = (−a, a)N , a > 0. Let u ∈ D(Ω). Assume that 1 < p < ∞.
Then,

u(x) =

∫ xN

−a

∂u

∂xN
(x′, t) dt
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where x = (x′, xN) and x′ = (x1, · · · , xN−1). Then, by Hölder’s inequality,

|u(x)| ≤
(∣∣∣∣ ∂u∂xN (x′, t)

∣∣∣∣p dt) 1
p

|xN + a|
1
p′

where p′ = p/(p− 1) is the conjugate exponent. Thus,

|u(x)|p ≤ (2a)
p
p′

∫ a

−a

∣∣∣∣ ∂u∂xN (x′, t)

∣∣∣∣p dt
which yields, on integrating with respect to x′,∫

|u(x′, xN)|p dx′ ≤ (2a)
p
p′

∫
Ω

∣∣∣∣ ∂u∂xN
∣∣∣∣p dx

which in turn yields, on integrating with respect to xN ,∫
Ω

|u|p dx ≤ (2a)
p
p′+1

∫
Ω

∣∣∣∣ ∂u∂xN
∣∣∣∣p dx.

It is easy to deduce this inequality when p = 1 as well. Thus for 1 ≤ p <∞,
we deduce from this that

|u|0,p,Ω ≤ 2a|u|1,p,Ω
for all u ∈ D(Ω). But since D(Ω) is dense in W 1,p

0 (Ω), the above inequality
also holds for all u ∈ W 1,p

0 (Ω).
Now if Ω is an arbitrary bounded domain, then we can find a > 0 such

that Ω ⊂ (−a, a)N = Ω̃. Let ũ denote the extension of u by zero outside Ω.

Then, if u ∈ W 1,p
0 (Ω), it follows that ũ ∈ W 1,p

0 (Ω̃). Thus

|u|0,p,Ω = |ũ|0,p,Ω̃ ≤ 2a|ũ|1,p,Ω̃ = 2a|u|1,p,Ω

since ∂ũ
∂xi

= ∂̃u
∂xi

. This completes the proof. �

We now make several important remarks.

• This inequality will be very crucial in the study of Dirichlet boundary
value problems for elliptic partial differential equations.

• It is easy to see that this proof works when Ω is unbounded, but is
bounded in some particular direction, i.e. if Ω is contained in some
infinite strip of finite width. However, it is not true for truly unbounded
regions. In particular, if Ω = RN , consider ζk as in Step 2 of the proof
of Theorem 3.1. Then

∂ζk
∂xi

=
1

k

∂ζ

∂xi
(
(x
k

)
.

If p > N , it is then easy to see that |ζk|1,p,RN → 0 as k →∞ while

|ζk|0,p,RN ≥ |B(0; k)|
1
p → ∞

(where |B(0; k)| denotes the Lebesgue measure of the ball B(0; k)) since
ζk ≡ 1 on B(0; k). Thus we cannot have Poincaré’s inequality in such
domains.
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• This inequality also shows that if Ω is bounded, then W 1,p(Ω) and
W 1,p

0 (Ω) cannot be equal (which was the case for Ω = RN). For the
constant function u ≡ 1 on Ω is inW 1,p(Ω) and |u|1,p,Ω = 0 but |u|0,p,Ω >
0. Hence the constant function cannot belong to W 1,p

0 (Ω).

• If u ∈ W 2,p
0 (Ω) where Ω is bounded, then u, ∂u

∂xi
∈ W 1,p

0 (Ω), for all
1 ≤ i ≤ N . Thus, it follows that∣∣∣∣ ∂u∂xi

∣∣∣∣
0,p,Ω

≤ C

∣∣∣∣ ∂u∂xi
∣∣∣∣
1,p,Ω

which is the same as saying

|u|1,p,Ω ≤ C|u|2,p,Ω.

Thus, for some constant C ′ = C ′(p,Ω) > 0 we get

|u|0,p,Ω ≤ C ′|u|2,p,Ω.

In general, there exists a constant C > 0, delpending only on m, p and
Ω, such that

|u|0,p,Ω ≤ C|u|m,p,Ω
for all u ∈ Wm,p

0 (Ω) when m ≥ 1 is an integer and 1 ≤ p <∞.

• We saw that the constant C in Poincaré’s inequality depended in some
way on the diameter of Ω. This is not the best possible constant. If
p = 2, it turns out that the best constant is connected to ‘the prin-
cipal eigenvalue of the Laplace operator with homogeneous Dirichlet
boundary conditions on ∂Ω’. For instance, if Ω = (0, 1), we get that
the constant is unity from the proof of Poincaré’s inequality. But the
best constant can be shown to be 1

π
. Thus, for all u ∈ H1

0 (0, 1), we
have (∫ 1

0

|u|2 dx
) 1

2

≤ 1

π

(∫ 1

0

|u′|2 dx
) 1

2

.

Equality is achieved for the function u = sinπx and constant multiples
thereof.

6 Imbedding theorems

We know that if u ∈ W 1,p(Ω), then, u ∈ Lp(Ω). We now ask the question if
the information that the first order partial derivatives of u are also in Lp(Ω)
will give us more information on the function u, vis-à-vis its smoothness or
integrability with respect to other exponents. In particular we would like to
know if W 1,p(RN) is continuously imbedded in Lp

∗
(RN), where p 6= p∗. In

other words, we are looking for an inequality of the form

|u|0,p∗,RN ≤ C|u|1,p,RN
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for all u ∈ W 1,p(RN), where C > 0 is a constant which depends only on p
and N . A simple analysis will show us when this will be possible, if at all,
and what is the value of p∗ that we should expect. Let λ > 0 be a fixed real
number. Then consider the scaling x 7→ λx which maps RN onto itself. Let
u ∈ W 1,p(RN). Then if we set uλ(x) = u(λx), it follows that uλ ∈ W 1,p(RN)
as well. We have

∂uλ
∂xi

(x) = λ
∂u

∂xi
(λx).

Consequently, by the change of variable formula, we get∫
RN

∣∣∣∣∂uλ∂xi
(x)

∣∣∣∣p dx = λp
∫
RN

∣∣∣∣ ∂u∂xi (λx)

∣∣∣∣p dx = λp−N
∫
RN

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣p dx.
Thus,

|uλ|1,p,RN = λ1−N
p |u|1,p,RN .

Similarly

|uλ|0,p∗,RN = λ−
N
p∗ |u|0,p∗,RN .

hence, for all λ > 0, we must have

0 < C ≤
|uλ|1,p,RN
|uλ|0,p∗,RN

= λ1−N
p

+ N
p∗
|u|1,p,RN
|u|0,p∗,RN

.

If 1− N
p

+ N
p∗

is strictly positive, then we let λ→ 0 to get a contradiction and
if it is strictly negative, we can let λ → ∞ to get a contradiction. Thus, if
at all we can hope for such an inequality, it follows that we must have that
this number is zero, i.e.

1

p∗
=

1

p
− 1

N
.

For this to be possible, it is necessary that p < N as well. In that case notice
that we also have p∗ > p.

We now split our investigation into three cases, viz., p < N, p = N and
p > N .

Theorem 6.1 (Sobolev’s Inequality) Let 1 ≤ p < N and define p∗ as above.
Then, there exists C = C(p,N) > 0 such that for all u ∈ W 1,p(RN),

|u|0,p∗,RN ≤ C|u|1,p,RN .

In particular, we have the continuous inclusion

W 1,p(RN) ↪→ Lp
∗
(RN) �

.

The proof of this result is rather technical and we refer the reader to
Kesavan [1].

Corollary 6.1 Let 1 ≤ p < N . Then we have the continuous inclusions

W 1,p(RN) ↪→ Lq(RN)

for all q ∈ [p, p∗].
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Proof: Let p < q < p∗. Then, there exists α ∈ (0, 1) such that

1

q
=

α

p
+

1− α
p∗

.

Then |u|αq ∈ L
p
αq (RN) and |u|(1−α)q ∈ L

p∗
(1−α)q (RN) if u ∈ W 1,p(RN).Thus,

since q = αq + (1− α)q, we get, by Hölder’s inequality,

|u|0,q,RN ≤ |u|α0,p,RN |u|
1−α
0,p∗,RN

≤ α|u|0,p,RN + (1− α)|u|0,p∗,RN
≤ α|u|0,p,RN + C(1− α)|u|1,p,RN
≤ C ′‖u‖1,p,RN .

(The inequality in the second line above comes from the generalised AM-GM
inequality.) This completes the proof. �

Corollary 6.2 Let Ω ⊂ RN , and let 1 ≤ p < N . Then, there exists C > 0
such that, for all u ∈ W 1,p

0 (Ω),

|u|0,p∗,Ω ≤ C|u|1,p,Ω
|u|0,q,Ω ≤ C‖u‖1,p,Ω, for all p < q < p∗.

In particular, for all p ≤ q ≤ p∗, we have the continuous inclusions

W 1,p
0 (Ω) ↪→ Lq(Ω).

If Ω = RN
+ or if Ω has bounded boundary and is of class C1, then we also

have the continuous inclusions

W 1,p(Ω) ↪→ Lq(Ω)

for all p ≤ q ≤ p∗.

Proof: The extension by zero imbeds W 1,p
0 (Ω) into W 1,p(RN) and now it is

easy to see the conclusions for the space W 1,p
0 (Ω). If Ω = RN

+ or if Ω has
bounded boundary and is of class C1, then there exists an extension operator

P : W 1,p(Ω)→ W 1,p(RN)

and again the results follow immediately. �
Let us rewrite the Sobolev inequality for W 1,p

0 (Ω) , where Ω is a bounded
open subset of RN in the following form: there exists a constant S > 0 such
that, for all u ∈ W 1,p

0 (Ω),

|u|1,p,Ω ≥ S|u|0,p∗,Ω.

The best possible constant S(p,N,Ω) is then given by

S(p,N,Ω) = inf
u∈W1,p

0 (Ω)

u6=0

|u|1,p,Ω
|u|0,p∗,Ω

.
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Now if Ω1 ⊂ Ω2 are two bounded open subsets of RN , then the extension
by zero outside Ω1 maps an element of W 1,p

0 (Ω1) into W 1,p
0 (Ω2), keeping

the norms unchanged in their value. It follows from this immediately that
S(p,N,Ω1) ≥ S(p,N,Ω2). Now let B1 = B(0; r1) and B2 = B(0; r2) be two
concentric balls centered at the origin. Then the scalings

x 7→ r2

r1

x and x 7→ r1

r2

x

map functions in W 1,p
0 (B1) into functions in W 1,p

0 (B2) and vice-versa. It then
follows that

S(p,N,B1) = S(p,N,B2).

Since the Lebesgue measure is translation invariant, this is also true if the
balls are concentric but are centered elsewhere in RN . Now if Ω is any
bounded open set, we can always find two concentric balls one within Ω and
the other containing Ω. Thus it follows that S(p,N,Ω) is independent of
the domain. In fact for all bounded domains Ω, we have that S(p,N,Ω) =
S(p,N), where

S(p,N) = inf
u∈W1,p(RN )

u6=0

|u|1,p,RN
|u|0,p∗,RN

.

The value of this best constant has been worked out (independently) by
Aubin and Talenti. When p = 2, the only minimizers of this optimization
problem have been shown to be the functions U(x), Uε(x − x0), where ε >
0, x0 ∈ RN and

U(x) = C(1 + |x|2)−
N−2

2

Uε(x) = Cε(ε+ |x|2)−
N−2

2

where C and Cε are positive normalization constants.
In particular, this shows that for any Ω a bounded open subset of RN ,the

minimization problem stated above can never have a solution. For, if there
were one, then the extension by zero outside Ω would be a minimizer for the
problem in RN as well, but it has been shown that the only minimizers in
RN are the functions U and Uε above and they never vanish anywhere. This
is true for all 1 ≤ p <∞.

Theorem 6.2 Let p = N . Then we have the continuous inclusions

W 1,N(RN) ↪→ Lq(RN)

for all q ∈ [N,∞). If Ω = RN
+ or if Ω is an open subset with bounded

boundary and is of class C1, then the above result is true with Ω replacing
RN . If Ω is any open set, we have the continuous inclusions

W 1,N
0 (Ω) ↪→ Lq(Ω)

for all q ∈ [N,∞). �

24



Once again, we refer the reader to Kesavan [1] for the proof.
We do not have the inclusion of any of the spaces mentioned in the pre-

ceding theorem in L∞ of the corresponding domain.

Example 6.1 Let Ω = B(0; 1
2
) ⊂ R2. Let

u(x) = log log
2

|x|
, x 6= 0.

Then u ∈ H1(Ω), i.e. p = 2 = N , but clearly u 6∈ L∞(Ω). �

We now turn to the case p > N . To motivate the theorem, let us consider
the case N = 1 and p > 1.

Example 6.2 Let 1 < p < ∞. Let I = (0, 1) and consider u ∈ W 1,p(I).
Then u′ ∈ Lp(I) and so is integrable. Thus the function

u(x) =

∫ x

0

u′(t) dt

is absolutely continuous and its derivative (both in the classical and distri-
butional sense) is u′. Thus, we have that (u− u)′ = 0 and it follows that

u = u+ c, a.e.

where c is a constant, since u− u is a constant distribution as was shown in
Section 1. Hence it follows that we can consider u as an absolutely continuous
function on I and so extends continuously to I = [0, 1]. (Recall that elements
of Lp are only equivalence classes of functions; by saying that an element of
W 1,p(I) is continuous, we mean that the equivalence class of any u ∈ W 1,p(I)
has a representative that is absolutely continuous.) Thus, we can write

u(x) = u(0) +

∫ x

0

u′(t) dt, x ∈ I.

We then see that

|u(0)| ≤ |u(x)|+ |u′|0,p,I |x|
1
p′ ≤ |u(x)|+ |u′|0,p,I

where p′ is the conjugate exponent of p, using Hölder’s inequality. Now
applying the triangle inequality in Lp to the functions |u(x)| and the constant
function |u′|0,p,I , we get that

|u(0)| ≤ |u|0,p,I + |u′|0,p,I ≤ C‖u‖1,p,I

where C only depends on p. Again,

|u(x)| ≤ |u(0)|+ |u′|0,p,I ≤ C‖u‖1,p,I

for any x ∈ I. Thus we have established the continuous inclusion

W 1,p(I) ↪→ C(I).
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In addition, we have, for x, y ∈ I,

u(x)− u(y) =

∫ y

x

u′(t) dt

from which we deduce that

|u(x)− u(y)| ≤ C|u|1,p,I |x− y|
1
p′

and notice that 1
p′

= 1 − 1
p
. Thus all the functions in W 1,p(I) are not only

absolutely continuous, but are also Hölder continuous with exponent 1− 1
p
. �

Theorem 6.3 Let p > N . Then we have the continuous inclusion

W 1,p(RN) ↪→ L∞(RN)

and there exists a constant C = C(N, p) > 0 such that, for all u ∈ W 1,p(RN),
and for almost all x, y ∈ RN , we have

|u(x)− u(y)| ≤ C|u|1,p,RN |x− y|1−
N
p .

The same conclusions hold when RN is replaced by RN
+ or by Ω with a bounded

boundary and of class C1. The analogous result is also true for W 1,p
0 (Ω) when

Ω ⊂ RN is any open set. In particular, if Ω is a bounded open set, we can
consider its elements as being Hölder continuous with exponent 1− N

p
. �

We refer the reader to Kesavan [1] for the proof.
Now let u ∈ W 2,p(RN). Then u and ∂u

∂xi
, 1 ≤ i ≤ N are all in W 1,p(RN).

If p < N , then this implies that u ∈ W 1,p∗(RN). Now assume that p∗ < N
as well. This will happen if

1

N
<

1

p∗
=

1

p
− 1

N

or, in other words, when p < N
2

. In this case u ∈ Lp∗∗(RN), where

1

p∗∗
=

1

p∗
− 1

N
=

1

p
− 2

N
.

More genrally, we have the following result.

Theorem 6.4 Let m ≥ 1 be an integer. Let 1 ≤ p <∞.
(i) If 1

p
− m

N
> 0, then

Wm,p(RN) ↪→ Lq(RN),
1

q
=

1

p
− m

N
.

(ii) If 1
p
− m

N
= 0, then

Wm,p(RN) ↪→ Lq(RN), q ∈ [p,∞).
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(iii) If 1
p
− m

N
< 0, then

Wm,p(RN) ↪→ L∞(RN).

In the last case, set k to be the integral part and θ to be the fractional part
of m− N

p
. Then there exists C > 0 such that for all u ∈ Wm,p(RN), we have

|Dαu|0,∞,RN ≤ C‖u‖m,p,RN , for all |α| ≤ k

and, for almost all x, y ∈ RN , and for all |α| = k, we have

|Dαu(x)−Dαu(y)| ≤ C‖u‖m,p,RN |x− y|θ.

In particular we have the continuous inclusion

Wm,p(RN) ↪→ Ck(RN)

for m > N
p

. The same results are true when RN is replaced by RN
+ or by Ω

of class Cm with bounded boundary and for the spaces Wm,p
0 (Ω) for any open

subset Ω of RN . Thus, if Ω is bounded and sufficiently smooth, we have, for
m > N

p
,

Wm,p(Ω) ↪→ Ck(Ω). �

Remark 6.1 If m > N
p

, and if |α| < k, where k is the integral part of

m − N
p

, it follows that Dαu is Lipschitz continuous, by virtue of the mean
value theorem and the fact that the highest order derivatives are bounded.
�

7 Compactness Theorems

In the previous section we saw various continuous inclusions of the Sobolev
spaces in the Lebesgue spaces and spaces of smooth functions. We now
investigate the compactness of these inclusions.

For example consider the case p > N and W 1,p(Ω) where Ω ⊂ RN is
bounded. Then we saw (cf. Theorem 6.3) that the functions in W 1,p(Ω)
are in C(Ω) and that they are also Hölder continuous with exponent 1 − 1

p
.

Thus, it follows that if B is the unit ball in W 1,p(Ω), then the elements of B
are uniformly bounded and that they are equicontinuous as well. Since Ω is
compact, it then follows that B is relatively compact in C(Ω), by the Ascoli-
Arzela theorem. Consequently the inclusion of W 1,p(Ω) in C(Ω) is compact.
This argument works for all the cases covered in Theorem 6.4 as well, when
p > N .

When p ≤ N , we have continuous inclusions into the Lebesgue spaces.
To examine the compactness of these inclusions, we need an analogue of the
Ascoli-Arzela theorem which describes criteria for the relative compactness
of subsets in the Lebesgue spaces. This comes from the theorem of Fréchet
and Kolmogorov. We omit the proofs and refer the reader to Kesavan [1].
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Theorem 7.1 (Rellich-Kondrasov) Let Ω ⊂ RN be a bounded open set. Let
1 ≤ p <∞.Then, the following inclusions are compact:
(i) if p < N,W 1,p(Ω) ↪→ Lq(Ω), for all 1 ≤ q < p∗;
(ii) if p = N , W 1,N(Ω) ↪→ Lq(Ω), for all 1 ≤ q <∞;
(iii) if p > N , W 1,p(Ω) ↪→ C(Ω). �

Example 7.1 We do not have compactness if Ω is unbounded. For example,
consider Ω = R. Let I = (0, 1) and let Ij = (j, j + 1) for j ∈ Z. Let f be a
C1 function supported in I. Define

fj(x) = f(x− j), j ∈ Z.
Then all the fj’s are in W 1,p(R) for any 1 ≤ p <∞ and the sequence {fj} is
clearly bounded in that space. However, since they all have disjoint supports,
we have that if i 6= j, then

|fi − fj|0,q,R = 2
1
q |f |0,q,R.

Thus the sequence {fj} cannot have a convergent subsequence in any Lq(R)
for 1 ≤ q <∞ and so none of the inclusions

W 1,p(R) ↪→ Lq(R)

can be compact. �

Example 7.2 When Ω ⊂ RN is bounded and p < N the inclusion

W 1,p(Ω) ↪→ Lp
∗
(Ω)

is not compact. For example, when p = 2 < N , assume that this inclusion is
compact. Consider the minimization problem: find u ∈ H1

0 (Ω) such that

J(u) = min
v∈H1

0(Ω)

|v|0,2∗,Ω=1

J(v)

where
J(v) = |v|1,Ω.

Denote the infimum by m ≥ 0. Let {vn} be a minimizing sequence. Then, it
is clearly bounded in H1

0 (Ω) and so it has a weakly convergent subsequence
{vnk} converging (weakly) to, say, v ∈ H1

0 (Ω). Since the inclusion

H1
0 (Ω) ↪→ L2∗(Ω)

is assumed to be compact, it follows that the subsequence converges in norm
in L2∗(Ω) and so we have that |v|0,2∗,Ω = 1. Now |.|1,Ω is a norm on H1

0 (Ω)
equivalent to the usual norm (Poincaré’s inequality) and since the norm is
weakly lower semi-continuous, we have that

m ≤ |v|1,Ω ≤ lim inf
k→∞

|vnk |1,Ω = m.

Thus v ∈ H1
0 (Ω) is a minimizer of J and extending it by zero outside Ω we

see that it achieves the best Sobolev constant (when p = 2) in RN . But we
saw in the last section that such minimizers never vanish and so we get a
contradiction. Thus, the inclusion of H1

0 (Ω) in L2∗(Ω) cannot be compact
and so, a fortiori, the inclusion of H1(Ω) in L2∗(Ω) cannot be compact either.
This is true for all p < N as well. �
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8 The spaces W s,p(Ω)

In this section, we will try to define the spaces W s,p(Ω) when 1 < p <∞ and
when s ∈ R is an arbitrary real number. We start with the case of negative
integers.

Proposition 8.1 Let Ω ⊂ RN be an open set and let 1 < p < ∞. Let F
belong to the dual space of W 1,p(Ω) (respectively, W 1,p

0 (Ω)). Then, there exist
f0, f1, · · · , fN ∈ Lp

′
(Ω), where p′ is the conjugate exponent of p, such that,

for all v ∈ W 1,p(Ω) (respectively, v ∈ W 1,p
0 (Ω)), we have

F (v) =

∫
Ω

f0v dx+
N∑
i=1

∫
Ω

fi
∂v

∂xi
dx.

If we define

‖v‖1,p,Ω = |v|0,p,Ω +
N∑
i=1

∣∣∣∣ ∂v∂xi
∣∣∣∣
0,p,Ω

(which is equivalent to the norm defined in Section 2), then

‖F‖ = max
0≤i≤N

|fi|0,p′,Ω.

If Ω is bounded and if F is in the dual of W 1,p
0 (Ω), then we may take f0 = 0.

Proof: Let E = (Lp(Ω))N+1 and let T be the natural isometry from W 1,p(Ω)
(respectively, W 1,p

0 (Ω)) into E described in Section 2, i.e.

T (v) =

(
v,
∂v

∂x1

, · · · , ∂v
∂xN

)
.

Let G ⊂ E denote the image of T and let S : G → W 1,p(Ω) (respectively,
W 1,p

0 (Ω)) be the inverse mapping of T . Consider the functional

h ∈ G 7→ F (S(h)).

By the Hahn-Banach theorem, we can extend this to a continuous linear
functional Φ on all of E, preserving the norm. Then, by the Riesz rep-
resentation theorem, we can find fi ∈ Lp

′
(Ω), 0 ≤ i ≤ N such that, if

v = (v0, v1, · · · , vN) ∈ E, then

Φ(v) =
N∑
i=0

∫
Ω

fivi dx.

Further, if we define ‖v‖E =
∑N

i=0 |vi|0,p,Ω, then

‖Φ‖ = max
0≤i≤N

|fi|0,p′,Ω

and of course, ‖Φ‖ = ‖F‖ by definition. Now, for any v ∈ W 1,p(Ω) (respec-
tively, W 1,p

0 (Ω)), we have v = S(T (v)) and so

F (v) = Φ(T (v)) =

∫
Ω

f0v dx+
N∑
i=1

∫
Ω

fi
∂v

∂xi
dx.
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If Ω is bounded then we can work (thanks to Poincaré’s inequality) with the
isometry T : W 1,p

0 (Ω)→ (Lp(Ω))N given by

T (u) =

(
∂v

∂x1

, · · · , ∂v
∂xN

)
and so we may take f0 = 0. This completes the proof. �

Now, if ϕ ∈ D(Ω), then, by definition of the distribution derivative,

F (ϕ) =

∫
Ω

f0ϕ dx−
N∑
i=1

<
∂f

∂xi
, ϕ >

where the bracket < ., . > denotes the action of a distribution on an element
of D(Ω). Since D(Ω) is dense in W 1,p

0 (Ω), a continuous linear functional on
W 1,p

0 (Ω) is completely defined by its action on D(Ω) and so, in this case, we
can identify F with the distribution

f0 −
N∑
i=1

∂fi
∂xi

.

This identification is not possible for functionals on W 1,p(Ω) since D(Ω) is not
dense there. Now, if m > 1 is any positive integer, any first order derivative
of an element in Wm,p(Ω) falls in Wm−1,p(Ω). For consistency, we would like
this to be true for m = 0 as well. Since derivatives of Lp

′
(Ω) functions are in

the dual of W 1,p
0 (Ω), we therefore define this dual space as W−1,p′(Ω).

Definition 8.1 Let 1 < p < ∞ and let m ≥ 1 be an integer. Then, the
space W−m,p′(Ω) is the dual of the space Wm,p

0 (Ω), where p′ is the conjugate
exponent of p. �

Let 1 < p < ∞ and let s > 0. Then the spaces W s,p(Ω) can be defined in a
variety of ways when s is not an integer. Usually interpolation theory in Lp

spaces is used. We will not go into these aspects here. The space W s,p
0 (Ω) will

be the closure of D(Ω) in W s,p(Ω) and its dual will be the space W−s,p′(Ω)
where p′ is the conjugate exponent of p.

We will henceforth concentrate on the case p = 2. We saw that Hm(RN)
can be defined via the Fourier transform. We can immediately generalize
this.

Definition 8.2 Let s > 0 be a real number. Then

Hs(RN) = {u ∈ L2(RN) | (1 + |ξ|2)
s
2 û(ξ) ∈ L2(RN)}.

The norm in this space is given by

‖u‖s,RN =

(∫
RN

(1 + |ξ|2)s|û(ξ)|2 dξ
) 1

2

.

If Ω ⊂ RN is a sufficiently smooth open subset, then Hs(Ω) is the space of
restriction of functions in Hs(RN) to Ω. If Ω is a proper subset of RN , then
Hs

0(Ω) is the closure of D(Ω) in Hs(Ω). The dual of Hs
0(Ω) (respectively,

Hs(RN)) is the space H−s(Ω) (respectively, H−s(RN)). �
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Let Ω ⊂ RN be a bounded open set with ‘sufficiently smooth’ boundary ∂Ω
and is such that Ω always lies to the same side of each connected component
of the boundary. Then, at each point of the boundary, there is a neighbour-
hood U and a bijective mapping T : Q → U , where Q is the unit cube in
RN centered at the origin, with the properties given in Definition 4.2. Since
∂Ω is compact, it can be covered by a finite number {Ui}mi=1 of such neigh-
bourhoods. Let {Ti}mi=1 be the corresponding maps. Let {ψi}mi=1 be a C∞
partition of unity subordinate to the collection {Ui}mi=1.

Being a smooth (N − 1)-dimensional manifold, ∂Ω can be provided with
the (N − 1)- dimensional surface measure induced on it from RN . Thus, we
can easily define the spaces Lp(∂Ω), for 1 ≤ p ≤ ∞. Now, given u ∈ L2(Ω),
we can write

u =
m∑
i=1

ψiu.

The function ψiu is supported inside the open set Ui. Consider the functions

vi(y
′, 0) = (ψiu)(T (y′, 0)), (y′, 0) ∈ Q0, 1 ≤ i ≤ m

where, as usual, y ∈ RN is written as (y′, yN) with y′ ∈ RN−1. Since vi is
supported in Q0, we can extend it to all of RN−1 by setting it to be zero
outside its support. It is easy to see that the maps u 7→ vi for 1 ≤ i ≤ m
all map L2(∂Ω) into L2(RN−1) and also maps smooth functions to smooth
functions. We now define, for s > 0,

Hs(∂Ω) = {u ∈ L2(∂Ω) | vi ∈ Hs(RN−1), for all 1 ≤ i ≤ m}.

It can be checked that this definition is independent of the choice of the atlas
{Ui}mi=1 on ∂Ω. We also define

H−s(∂Ω) = (Hs(∂Ω))∗

(where the star denotes the dual space) for s > 0.

9 Trace theory

Sobolev spaces are the ideal functional analytic setting to study boundary
value problems. In that case given u ∈ W 1,p(Ω), where Ω ⊂ RN is a bounded
open set, we would like to assign meanings expressions like ‘u restricted to
∂Ω’ or ‘the outer normal derivative ∂u

∂ν
of u on ∂Ω’ and so on. But when

u ∈ W 1,p(Ω), it is a priori an element of Lp(Ω) and so is only defined almost
everywhere. Since ∂Ω has measure zero in RN , it is therefore not meaningful
to talk of the values u takes on the boundary.

However, since we have additional information on the derivatives of u,
when u is in some Sobolev space, we can indeed give such notions a meaning
consistent with our intuitive understanding of terms such as boundary value
and exterior normal derivative. We will now make this more precise.

While the theory outlined below can be done for all 1 < p < ∞, for
simplicity, we will restrict ourselves to the case p = 2.
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Theorem 9.1 There exists a continuous linear map γ0 : H1(RN
+ )→ L2(RN−1)

such that, if v ∈ H1(RN
+ ) is continuous on RN

+ , then γ0(v) is the restriction
of v to ∂RN

+ = RN−1.

Proof: Let v ∈ D(RN). Then

|v(x′, 0)|2 = −
∫∞

0
∂

∂xN
(|v(x′, xN)|2) dxN

= −2
∫∞

0
∂v
∂xN

(x′, xN).v(x′, xN) dxN

≤
∫∞

0

(∣∣∣ ∂v∂xN
(x′, xN)

∣∣∣2 + |v(x′, xN)|2
)
dxN .

Integrating both sides with respect to x′ over RN−1, we get∫
RN−1

|v(x′, 0)|2 dx′ ≤
∫
RN+

(∣∣∣∣ ∂v∂xN
∣∣∣∣2 + |v|2

)
dx.

In other words, we have ∣∣v|
RN−1

∣∣
0,RN−1

≤ ‖v‖1,RN+ .

Since we know that (cf. Example 4.1 and Corollary 4.1) the restrictions of
functions in D(RN) are dense in H1(RN

+ ), the above inequality implies that
the map

v 7→ v|
RN−1

extends uniquely to a continuous linear map γ0 from H1(RN
+ ) into L2(RN−1).

Now let v ∈ H1(RN
+ ) be continuous on RN

+ . Extend v to all of RN by
reflection on RN−1 (cf. Example 4.1). Choose a sequence εm ↓ 0 and let ρεm
be the corresponding mollifiers. Let ζ ∈ D(RN) be such that 0 ≤ ζ ≤ 1, ζ ≡
1 on B(0; 1) and such that supp(ζ) ⊂ B(0; 2). Define ζk(x) = ζ(x/k). Then
(cf. Lemma 3.1), ρεm ∗ v(x)→ v(x) for all x ∈ RN and also, since ζm ≡ 1 on
B(0;m), we have vm(x) → v(x) for all x ∈ RN , where

vm = ζm.(ρεm ∗ v).

We also know that (cf. Theorem 3.1) vm → v in H1(RN) and hence in
H1(RN

+ ) as well. Thus γ0(vm)→ γ0(v) in L2(RN−1). But, since vm ∈ D(RN),
it follows that γ0(vm) is the restriction of vm to RN−1 and we saw that this
converges pointwise to the restriction of v to RN−1. Thus, it follows that
γ0(v) is the restriction of v to RN−1. This completes the proof. �

It can be shown (cf. Kesavan [1]) that the range of γ0 is the space

H
1
2 (RN−1) and that its kernel is H1

0 (RN
+ ). Thus we can interpret elements of

H1
0 (RN

+ ) as those of H1(RN
+ ) which ‘vanish on the boundary’.

In the space H2(RN
+ ), apart from γ0, we can imitate the proof of the

preceding theorem to show the existence of a map γ1 : H2(RN
+ )→ L2(RN−1)

such that if v ∈ H2(RN
+ ) ∩ C1(RN

+ ), then

γ1(v) = − ∂v

∂xN

∣∣∣∣
RN−1

.

32



Its range would be H
1
2 (RN−1) while that of γ0 will be H

3
2 (∂Ω). The kernel

of the map

(γ0, γ1) : H2(RN
+ ) → H

3
2 (RN−1)×H

1
2 (RN−1)

is the space H2
0 (RN

+ ). More, generally, we can define maps γj : Hm(RN
+ ) →

L2(RN−1) which, for a smooth function v is the restriction of (− ∂v
∂xN

)j to

RN−1 and whose range is Hm−j− 1
2 (RN−1) for 1 ≤ j ≤ m − 1. The kernel of

the map

(γ0, γ1, · · · , γm−1) : Hm(RN
+ ) → Πm−1

j=0 H
m−j− 1

2 (RN−1)

is Hm
0 (RN

+ ).
Let us now turn to the case of a sufficently smooth bounded open set Ω

of RN . Let {Ui}mi=1 together with the associated maps {Ti}mi=1 be an atlas
for the boundary ∂Ω. Let {ψi}mi=1 be an associated C∞ partition of unity
subordinate to the collection {Ui}mi=1. If u ∈ H1(Ω), then (after extension by
zero) we have that for each 1 ≤ i ≤ m, the functions (ψiu|Ui∩Ω

)◦Ti ∈ H1(RN
+ )

and so we can define its trace γ0 as an element of H
1
2 (RN−1). Coming back

by T−1
i , we can define the trace on Ui ∩ ∂Ω. Piecing these together, we get

the trace γ0u ∈ L2(∂Ω) and, by our definition of the spaces on ∂Ω, the range

will be precisely H
1
2 (∂Ω). Similarly, we can define higher order traces, which

generalize the notion of exterior normal derivatives of various orders.

Theorem 9.2 (Trace Theorem) Let Ω ⊂ RN be a bounded open set of class
Cm+1. Then there exist maps γ0, γ1, · · · , γm−1 from Hm(Ω) into L2(∂Ω) such
that
(i) if v ∈ Hm(Ω) is sufficently smooth, then,

γ0(v) = v|
∂Ω
, γ1(v) =

∂v

∂ν

∣∣∣∣
∂Ω

, · · · , γm−1(v) =
∂m−1v

∂νm−1

∣∣∣∣
∂Ω

where ν is the unit outward normal on ∂Ω;
(ii) The range of the map (γ0, γ1, · · · , γm−1) is

Πm−1
j=0 H

m−j− 1
2 (∂Ω);

(iii) The kernel of the map (γ0, γ1, · · · , γm−1) is the space Hm
0 (Ω). �

Theorem 9.3 (Green’s theorem) If Ω ⊂ RN is a bounded open set of class
C1 and if u, v ∈ H1(Ω), then, for 1 ≤ i ≤ N ,∫

Ω

u
∂v

∂xi
dx = −

∫
Ω

∂u

∂xi
v dx+

∫
∂Ω

γ0(u)γ0(v)νi dσ

where ν = (ν1, · · · , νN) is the unit outward normal on ∂Ω. In particular, if
one of the two functions is in H1

0 (Ω), we have∫
Ω

u
∂v

∂xi
dx = −

∫
Ω

∂u

∂xi
v dx.
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Proof: We know that C∞(Ω) is dense in H1(Ω). If {un} and {vn} are
sequences of smooth functions converging in H1(Ω) to u and v respectively,
we have, by the classical Green’s theorem,∫

Ω

um
∂vm
∂xi

dx = −
∫

Ω

∂um
∂xi

vm dx+

∫
∂Ω

umvmνi dσ

for any 1 ≤ i ≤ N . The result now follows on passing to the limit as n→∞.
If one of them is in H1

0 (Ω), then the integrand in the boundary integral van-
ishes. �

We conclude this section by showing that the kernel of the trace map γ0

is indeed H1
0 (Ω) in the one-dimensional case.

Theorem 9.4 Let 1 < p <∞. Let I = (0, 1) ⊂ R. Then

W 1,p
0 (I) = {u ∈ W 1,p(I) | u(0) = u(1) = 0}.

Proof: Let u ∈ W 1,p
0 (I). Then there exists a sequence {un} in D(I) such

that un → u in W 1,p(I). But this implies that (cf. Example 6.2) that un → u
uniformly on I and so it follows that u(0) = u(1) = 0.

Conversely, assume that u ∈ W 1,p(I) (which is therefore continuous on
I) is such that u(0) = u(1) = 0. Then

u(x) =

∫ x

0

u′(t) dt and

∫ 1

0

u′(t) dt = 0.

Since D(I) is dense in Lp(I), let {vn} be a sequence in D(I) coverging to u′

in Lp(I). Set an =
∫ 1

0
vn(t) dt. Since I has finite measure, we also have that

vn → u′ in L1(I) and so it follows that an → 0. Now let ψ0 ∈ D(I) such that∫ 1

0
ψ(t) dt = 1. Define

ψn(t) = vn(t)− anψ0(t).

Then ψn ∈ D(I) and its integral over I vanishes, by construction. Hence,
there exists un ∈ D(I) such that u′n = ψn (cf. Lemma 1.1).
Now,

(un − u)(x) =

∫ x

0

(u′n − u′)(t) dt =

∫ x

0

(ψn − u′)(t) dt.

Thus
|(un − u)(x)| ≤ |ψn − u′|0,p,I

which yields

|un − u|0,p,I ≤ |ψn − u′|0,p,I
≤ |ψn − vn|0,p,I + |vn − u′|0,p,I
= an|ψ0|0,p,I + |vn − u′|0,p,I
→ 0.

Also
|u′n − u′|o,p,I = |ψn − u′|0,p,I → 0

as already shown. Thus {un} is a sequence in D(I) which converges to u in
W 1,p(I) and so u ∈ W 1,p

0 (I) whih completes the proof. �
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