FB IMG_1739118094134
Prof Viji Z. Thomas
Professor (Maths)
  +91 (0)471 - 2778055
  vthomas@iisertvm.ac.in

On the size of the Schur multiplier of finite groups, with Sathasivam. K and T. Mavely,  \href{https://doi.org/10.1016/j.jalgebra.2025.01.016}{J. Algebra, \textbf{668} (2025), 420--446}.

Bounding the exponent of the commutator subgroup of a finite $p$-group,  with P. Komma, \href{https://doi.org/10.1007/s13366-024-00751-0}{Beitr Algebra Geom. (2024)}

Invariance of the Schur multiplier, the Bogomolov multiplier and the minimal number of generators under a variant of isoclinism.,  with A. E. Antony and Sathasivam. K  \href{https://doi.org/10.1515/jgth-2023-0066}{J. Group Theory. \textbf{27}, No. 3, 611-628 (2024)}

The maximum number of triangles in a graph and its relation to the size of Schur multiplier of special $p$-groups,  with T. N. Mavely, \href{https://doi.org/10.1080/00927872.2023.2175842}{Comm. Alg. \textbf{51}, No. 7, 2983-2994 (2023)}

A property of $p$-groups of nilpotency class $p$+1 related to a theorem of Schur.,  with A. Antony and K. Patali, \href{https://doi.org/10.1007/s11856-021-2264-4}{Isr. J. Math. \textbf{247}, 251-267 (2022)}

On Schurs exponent property and its relation to Noether’s Rationality problem., \href{https://doi.org/10.1007/s13226-021-00189-3}{Indian J. Pure Appl. Math. \textbf{52}, 729-734 (2021)}. 

The second stable homotopy group of the Eilenberg-Maclane space.,  with A. Antony, G. Donadze and Vishnu Prasad, \href{http://dx.doi.org/10.1007/s00209-017-1870-7}{Math. Z. \textbf{287} (2017), 1327-1342}.

On some closure properties of the nonabelian tensor product., with G. Donadze and M. Ladra, \href{http://dx.doi.org/10.1016/j.jalgebra.2016.10.045}{J. Algebra, \textbf{472} (2017), 399-413}.

Bazzoni-Glaz Conjecture, with G. Donadze, \href{http://dx.doi.org/10.1016/j.jalgebra.2014.08.018}{J. Algebra, \textbf{420} (2014), 141-160}.

Two generalizations of the nonabelian tensor product, with M. Ladra, \href{http://dx.doi.org/10.1016/j.jalgebra.2012.07.017}{J. Algebra, \textbf{369} (2012), 96-113}.

The nonabelian tensor product of finite groups is finite: A homology
free proof, in \href{https://doi.org/10.1017/S0017089510000352}{Glasgow Math. J., \textbf{52} (2010), 473-477}.