Prof Tapas K. Manna
Professor (Biology)
  +91 (0)471 - 2778172
  dG1hbm5hQGlpc2VydHZtLmFjLmlu

PUBLICATIONS

  1. Lakshmi, R. B., Nayak, P., Raz, L., Sarkar, A., Saroha, A., Kumari, P., Nair, V. M., Kombarakkaran, D. P., Sajana, S., Sanusha, M. G., Agasti, S. S., Paul, R., Ben-David, U., Manna, T. K* (2024). CKAP5 stabilizes CENP-E at kinetochores by regulating microtubule-chromosome attachments. EMBO Reports, DOI: https://doi.org/10.1038/s44319-024-00106-9.
  2. Nair VM, Sabu AS, Hussain A, Pauly DK, Lakshmi RB, Manna TK* (2023) E3-ubiquitin ligase, FBXW7 regulates mitotic progression by targeting BubR1 for ubiquitin-mediated degradation. Cell. Mol. Life Sci.(in press)
  3. Radhakrishnan RM, Kizhakkeduth ST, Nair VM, Ayyappan S, Lakshmi RB, Babu N, Prasannajith A, Umeda K, Vijayan V, Kodera N, Manna TK* (2022) Kinetochore-microtubule attachment in human cells is regulated by the interaction of a conserved motif of Ska1 with EB1. J. Biol. Chem., 299, 102853.
  4. Badarudeen B, Anand U, Mukhopadhyay S, Manna TK* (2021) Ubiquitin signalling in the control of centriole duplication. The FEBS Journal, DOI: https://doi.org/10.1111/febs.16069
  5. Ayyappan S, Dharan PS, Krishnan A, Marira RR, Lambert M, Manna TK, Vijayan V* (2021) SxIP binding disrupts the constitutive homodimer interface of EB1 and stabilizes EB1 monomer. Biophysical Journal, 120, 2019-2029.
  6. Gupta H, Rajeev R, Sasmal R, Radhakrishnan MR, Anand U, Agasti S, Manna TK* (2020) SAS-6 association with gamma-tubulin ring complex is required for centriole duplication in human cells. Current Biology, 30, 2395-2403. e4
  7. Badarudeen B, Gupta R, Nair SV, Chandrasekharan A, Manna TK* (2020) The ubiquitin ligase FBXW7 targets the centriolar assembly protein HsSAS-6 for degradation and thereby regulates centriole duplication. J. Biol. Chem., 295, 4428-4437.
  8. Rajeev R, Singh P, Asmita A, Anand U, Manna TK* (2019) Aurora a site specific TACC3 phosphorylation regulates astral microtubule assembly by stabilizing gamma-tubulin ring complex. BMC Mol Cell Biol., 20, 58.
  9. Gireesh KK, Shine A, Bhagya Lakshmi R, Vijayan V*, Manna TK* (2018) GTP binding facilitates EB1 recruitment onto microtubules by relieving its auto-inhibition. Scientific Reports, 8, 9792-9804.
  10. Bhagya Lakshmi R, Nair VM, Manna TK*. (2018) Regulators of spindle microtubules and their mechanisms: living together matters. (review) IUBMB Life, 70, 101-111.
  11. Thomas GE, Renjith MR, Manna TK*. (2017) Kinetochore-Microtubule Interactions in Chromosome Segregation: lessons from yeast and mammalian cells. (review with research components) Biochemical Journal, 474, 3559-3577.
  12. Thomas GE, Bandopadhyay K, Sutradhar S, MR Renjith, Singh P, KK Gireesh, Simon S, Badarudeen Binshad, Gupta H, Banerjee M, Paul R, Mitra J, Manna TK* (2016) EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice. Nature Communications, 7, 11665.
  13. Gupta H, Badarudeen Binshad, George A, Thomas GE, KK Gireesh, Manna TK.* (2015) Human SAS-6 C-terminus nucleates and promotes microtubule assembly in vitro by binding to microtubules. Biochemistry, 54, 6413-22.
  14. Suhail TV, Singh P, Manna TK.* (2015) Suppression of centrosome protein TACC3 induces G1 arrest and cell death through activation of p38-p53-p21 stress signaling pathway. Eur. J. Cell Biology, 94, 90-100
  15. Thomas GE, Sreeja JS, KK Gireesh, Gupta H, Manna TK.* (2015) Suppression of +TIP protein EB1 sensitizes cells to paclitaxel-induced proliferation inhibition and apoptosis through inhibition of paclitaxel binding on microtubules. Int. J. Oncol., 46, 133-146
  16. Singh P, Thomas GE, KK Gireesh, Manna TK.* (2014) TACC3 regulates microtubule nucleation by affecting gamma-tubulin ring complexes. J. Biol. Chem., 289, 31719-31735.
  17. KK Gireesh, Sreeja JS, Chakraborti S, Singh P, Thomas GE, Gupta H, Manna TK.* (2014) Microtubule +TIP protein EB1 binds to GTP and undergoes dissociation from dimer to monomers on binding GTP. Biochemistry, 53, 5551-5555.
  18. KK Gireesh, Rashid A, Chakraborty S, Panda D, Manna TK*. (2012) CIL-102 binds to tubulin at colchicine binding site and triggers apoptosis in MCF-7 cells by inducing monopolar and multinucleated cells. Biochemical Pharmacology, 84, 633-645.
  19. Manna T, Thrower DA, Honnappa S, Steinmetz MO, Wilson L. (2009) Regulation of microtubule dynamic instability in vitro by differentially phosphorylated stathmin. J. Biol. Chem., 284, 15640-15649.
  20. Sivaram M, Wadzinski, T, Redick S, Manna T, Doxsey, SJ (2009) Dynein light intermediate chain 1 is required for progress spindle assembly checkpoint. EMBO Journal, 28, 902-914.
  21. Manna T, Honnappa S, Steinmetz MO, Wilson L. (2008) Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150glued. Biochemistry, 47, 779-786.
  22. Ray A, Okouneva T, Manna T, Miller HP, Schmid SM, Art.haud L, Jordan MA, Wilson L. (2007) Mechanism of action of the microtubule targeted antimitotic depsipeptide Tasidotin (formerly ILX 651) and its major metabolite, Tasidotin C-carboxylate. Cancer Research, 67, 3767-3776.
  23. Manna T, Grenningloh G, Miller HP, Wilson L. (2007) The Oncoprotein18 family protein SCG10 differentially regulates plus and minus end dynamics of microtubule at steady state in vitro: Implications for its role in neurite outgrowth. Biochemistry, 46, 3543-3552.
  24. Manna T, Thrower D, Miller HP, Curmi P, Wilson L. (2006) Oncoprotein18 strongly increases the minus end catastrophe frequency and induces rapid treadmilling of bovine brain microtubules at steady state in vitro. J. Biol. Chem., 281: 2071-2078.
  25. Mohan R, Banerjee M, Ray A, Manna T, Wilson L, Owa T, Bhattacharyya B, Panda D. (2006) Antimitotic sulfonamides inhibit microtubule assembly dynamics and cancer cell proliferation. Biochemistry, 45, 5440-5449.
  26. Jordan MA, Kamath K, Manna T, Okouneva T, Miller HP, Davis C, Littlefield B, Wilson L. (2005) The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Molecular Cancer Therapeutics, 4,1086-1095
  27. Sarkar T, Mitra G, Gupta S, Manna T, Poddar A, Panda D, Das KP, Bhattacharyya B. (2004) MAP2 prevents protein aggregation and facilitates reactivation of unfolded enzymes. Eur. J. Biochem. 271(8):1488-96.
  28. Manna T, Sarkar T, Poddar A, Roychowdhury M, Das KP, Bhattacharyya B. Chaperone-like activity of tubulin. binding and reactivation of unfolded substrate enzymes. (2001) J. Biol. Chem., 276, 39742-39747.
  29. Sarkar T, Manna T, Bhattacharyya S, Mahapatra P, Poddar A, Pena J, Solana R, Tarazona R, Roy S, Bhattacharyya B. Role of the carboxy-termini of tubulin on its chaperone-like activity. (2001) Proteins: Structure, Function, and Genetics, 44, 262-269.
  30. Pal D, Mahapatra P, Manna T, Chakraborty P, Bhattacharyya B, Banerjee A, Basu G, Roy S. Conformational properties of alpha-tubulin tail peptide: implications for tail-body interaction. (2001) Biochemistry, 40, 15512-15519.
  31. Roychowdhury M, Sarkar N, Manna T, Bhattacharyya S, Sarkar T, Basusarkar P, Roy S, Bhattacharyya B. Sulfhydryls of tubulin. A probe to detect conformational changes of tubulin (2000), Eur. J. Biochem. 267, 3469-3476.
  32. Guha S, Manna T, Das, KP, Bhattacharyya B. Chaperone-like activity of tubulin (1998). J. Biol. Chem., 273, 30077- 30080.
  33. Bhattacharyya B, Manna T, Sarkar T, Poddar A. Chaperone-like activity of detergents, RNA and proteins (2002) Proc. Ind. Natl. Sci. Acad. (review), 68, 367-374.