Dr RAMANATHAN NATESH
Associate Professor (Biology)
  +91 (0)471 - 4712778087
  bmF0ZXNoNzJAaG90bWFpbC5jb20=

23) Maddi ER, Raghavan SC, Natesh R*. (2021). Hypomorphic mutations in human DNA ligase IV lead to compromised DNA binding efficiency, hydrophobicity and thermal stability.  Protein Eng Des Sel. 2021 Feb 15;34:gzab001. doi: 10.1093/protein/gzab001.

22) Maddi ER, Natesh R*. (2021). Optimization strategies for expression and purification of soluble N-terminal domain of human centriolar protein SAS-6 in Escherichia coli.. Protein Expr Purif.  doi: 10.1016/j.pep.2021.105856.

21) Joseph A, Nagaraja V and Natesh R*. (2019). Mycobacterial transcript cleavage factor Gre, exhibits Chaperone-like activity. BBA Protein and Proteomics, 1867, 757-764

20) Natesh R. (2019).  Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design.   Book Chapter in the book titled “Structural Bioinformatics: Applications in Preclinical Drug Discovery Process”. Editor:  C. Gopi Mohan (Ph.D.), Springer Nature, 27, 375-400.

19) Joseph A,  Nagaraja V  and Natesh R.  (2018).    MSMEG_6292, a Mycobacterium smegmatis RNA polymerase secondary channel-binding protein: purification, crystallization and X-ray diffraction analysis. Acta Crystallogr., F74, 543-548.

18) Natesh R, Clare DK, Farr GW, Horwich AL and Saibil HR. (2018). A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin. Int J Biol Macromol. 118(Pt A), 671-675. 

 
16) Natesh R. (2014). Crystallography beyond Crystals: PX and SPCryoEM. Resonance, 19, 1177-1196.
 
15) Gu S, He J, Ho WT, Ramineni S, Thal DM, Natesh R, Tesmer JJ, Hepler JR, Heximer SP. (2007). Unique hydrophobic extension of the RGS2 amphipathic helix domain imparts increased plasma membrane binding and function relative to other RGS R4/B subfamily members. J. Biol. Chem., 282, 33064-33075.
 
14) Watermeyer JM, Sewell BT, Schwager SL, Natesh R, Corradi HR, Acharya KR, Sturrock ED. (2006). Structure of testis ACE glycosylation mutants and evidence for conserved domain movement. Biochemistry, 45, 12654-12663.
 
13) Balyasnikova IV, Woodman ZL, Albrecht II RF, Natesh R, Acharya KR, Sturrock ED, Danilov SM. (2005). The localization of an N-domain region of Angiotensin-Converting Enzyme involved in the regulation of Ectodomain Shedding using monoclonal antibodies J. Proteome Res., 4, 258-267.
 
12) Lloyd MD, Pederick RL, Natesh R, Woo LW, Purohit A, Reed MJ, Acharya KR, Potter BV. (2005) Crystal structure of human carbonic anhydrase II at 1.95 A resolution in complex with 667-coumate, a novel anti-cancer agent. Biochem J. 385, 715-720.
 
11) Natesh R, Schwager SL, Evans HR, Sturrock ED, Acharya KR. (2004). Structural Details on the Binding of Anti-hypertensive Drugs Captopril and Enalaprilat to human testicular Angiotensin Converting Enzyme. Biochemistry, 43, 8718-8724.
 
10) Sturrock ED, Natesh R, van Rooyen J and Acharya KR (2004). Structure of Angiotensin-I converting enzyme. Cellular and Molecular Life Sciences (CMLS), 61, 2677-2686.
 
9) Turton K, Natesh R, Thiyagarajan N, Chaddock JA and Acharya KR.(2004). Crystal structures of Erythrina cristagalli lectin with bound N-linked oligosaccharide and lactose. Glycobiology, 14, 923–929.
 
8) Zhang Y, Deshpande A, Zhihong Xie Z, Natesh R, Acharya KR and Keith Brew (2004). Roles of active site tryptophans in substrate binding and catalysis by ?-1,3 galactosyltransferase. Glycobiology, 14, 1295-1302.
 
7) Natesh R, Schwager SL, Sturrock ED, Acharya KR. (2003). Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature, 421, 551-554.
 
6) Gordon K, Redelinghuys P, Schwager SL, Ehlers MR, Papageorgiou AC, Natesh R, Acharya KR, Sturrock ED. (2003). Deglycosylation, processing and crystallization of human testis angiotensin-converting enzyme. Biochem. J., 371, 437-442.
 
5) Natesh R, Manikandan K, Bhanumoorthy P, Viswamitra MA, Ramakumar S. (2003). Thermostable xylanase from Thermoascus aurantiacus at ultrahigh resolution (0.89 Å) at 100 K and atomic resolution (1.11 Å) at 293 K refined anisotropically to small-molecule accuracy. Acta Crystallogr., D59,105-117.
 
4) Zhang Y, Swaminathan GJ, Deshpande A, Boix E, Natesh R, Xie Z, Acharya KR, Brew K. (2003). Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity. Biochemistry, 42,13512-13521.
 
3) Boix E, Swaminathan GJ, Zhang Y, Natesh R, Brew K, Acharya KR. (2001). Structure of UDP complex of UDP-galactose:b-galactoside-a-1,3-galactosyltransferase at 1.53 Å resolution reveals a conformational change in the catalytically important C terminus. J. Biol. Chem., 276, 48608-48614.
 
2) Natesh R, Bhanumoorthy P, Vithayathil PJ, Sekar K, Ramakumar S, Viswamitra MA. (1999). Crystal structure at 1.8 Å resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. J. Mol. Biol., 288, 999-1012.
 
1) Natesh R, Bhanumoorthy P, Vithaythil PJ, Sekar K, Ramakumar S, Viswamitra MA. (1999). Crystal structure and primary sequence of Thermoascus aurantiacus Xylanase : Basis of Thermostability. – IUCr congress poster abstract, appeared as a publication in Acta Crystallogr., A55 Supplement, 327.